Metamath Proof Explorer


Theorem pj1f

Description: The left projection function maps a direct subspace sum onto the left factor. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses pj1eu.a
|- .+ = ( +g ` G )
pj1eu.s
|- .(+) = ( LSSum ` G )
pj1eu.o
|- .0. = ( 0g ` G )
pj1eu.z
|- Z = ( Cntz ` G )
pj1eu.2
|- ( ph -> T e. ( SubGrp ` G ) )
pj1eu.3
|- ( ph -> U e. ( SubGrp ` G ) )
pj1eu.4
|- ( ph -> ( T i^i U ) = { .0. } )
pj1eu.5
|- ( ph -> T C_ ( Z ` U ) )
pj1f.p
|- P = ( proj1 ` G )
Assertion pj1f
|- ( ph -> ( T P U ) : ( T .(+) U ) --> T )

Proof

Step Hyp Ref Expression
1 pj1eu.a
 |-  .+ = ( +g ` G )
2 pj1eu.s
 |-  .(+) = ( LSSum ` G )
3 pj1eu.o
 |-  .0. = ( 0g ` G )
4 pj1eu.z
 |-  Z = ( Cntz ` G )
5 pj1eu.2
 |-  ( ph -> T e. ( SubGrp ` G ) )
6 pj1eu.3
 |-  ( ph -> U e. ( SubGrp ` G ) )
7 pj1eu.4
 |-  ( ph -> ( T i^i U ) = { .0. } )
8 pj1eu.5
 |-  ( ph -> T C_ ( Z ` U ) )
9 pj1f.p
 |-  P = ( proj1 ` G )
10 subgrcl
 |-  ( T e. ( SubGrp ` G ) -> G e. Grp )
11 5 10 syl
 |-  ( ph -> G e. Grp )
12 eqid
 |-  ( Base ` G ) = ( Base ` G )
13 12 subgss
 |-  ( T e. ( SubGrp ` G ) -> T C_ ( Base ` G ) )
14 5 13 syl
 |-  ( ph -> T C_ ( Base ` G ) )
15 12 subgss
 |-  ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) )
16 6 15 syl
 |-  ( ph -> U C_ ( Base ` G ) )
17 12 1 2 9 pj1fval
 |-  ( ( G e. Grp /\ T C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) -> ( T P U ) = ( z e. ( T .(+) U ) |-> ( iota_ x e. T E. y e. U z = ( x .+ y ) ) ) )
18 11 14 16 17 syl3anc
 |-  ( ph -> ( T P U ) = ( z e. ( T .(+) U ) |-> ( iota_ x e. T E. y e. U z = ( x .+ y ) ) ) )
19 1 2 3 4 5 6 7 8 pj1eu
 |-  ( ( ph /\ z e. ( T .(+) U ) ) -> E! x e. T E. y e. U z = ( x .+ y ) )
20 riotacl
 |-  ( E! x e. T E. y e. U z = ( x .+ y ) -> ( iota_ x e. T E. y e. U z = ( x .+ y ) ) e. T )
21 19 20 syl
 |-  ( ( ph /\ z e. ( T .(+) U ) ) -> ( iota_ x e. T E. y e. U z = ( x .+ y ) ) e. T )
22 18 21 fmpt3d
 |-  ( ph -> ( T P U ) : ( T .(+) U ) --> T )