Metamath Proof Explorer


Theorem pj1f

Description: The left projection function maps a direct subspace sum onto the left factor. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses pj1eu.a + ˙ = + G
pj1eu.s ˙ = LSSum G
pj1eu.o 0 ˙ = 0 G
pj1eu.z Z = Cntz G
pj1eu.2 φ T SubGrp G
pj1eu.3 φ U SubGrp G
pj1eu.4 φ T U = 0 ˙
pj1eu.5 φ T Z U
pj1f.p P = proj 1 G
Assertion pj1f φ T P U : T ˙ U T

Proof

Step Hyp Ref Expression
1 pj1eu.a + ˙ = + G
2 pj1eu.s ˙ = LSSum G
3 pj1eu.o 0 ˙ = 0 G
4 pj1eu.z Z = Cntz G
5 pj1eu.2 φ T SubGrp G
6 pj1eu.3 φ U SubGrp G
7 pj1eu.4 φ T U = 0 ˙
8 pj1eu.5 φ T Z U
9 pj1f.p P = proj 1 G
10 subgrcl T SubGrp G G Grp
11 5 10 syl φ G Grp
12 eqid Base G = Base G
13 12 subgss T SubGrp G T Base G
14 5 13 syl φ T Base G
15 12 subgss U SubGrp G U Base G
16 6 15 syl φ U Base G
17 12 1 2 9 pj1fval G Grp T Base G U Base G T P U = z T ˙ U ι x T | y U z = x + ˙ y
18 11 14 16 17 syl3anc φ T P U = z T ˙ U ι x T | y U z = x + ˙ y
19 1 2 3 4 5 6 7 8 pj1eu φ z T ˙ U ∃! x T y U z = x + ˙ y
20 riotacl ∃! x T y U z = x + ˙ y ι x T | y U z = x + ˙ y T
21 19 20 syl φ z T ˙ U ι x T | y U z = x + ˙ y T
22 18 21 fmpt3d φ T P U : T ˙ U T