| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pj1eu.a |
|
| 2 |
|
pj1eu.s |
|
| 3 |
|
pj1eu.o |
|
| 4 |
|
pj1eu.z |
|
| 5 |
|
pj1eu.2 |
|
| 6 |
|
pj1eu.3 |
|
| 7 |
|
pj1eu.4 |
|
| 8 |
|
pj1eu.5 |
|
| 9 |
1 2
|
lsmelval |
|
| 10 |
5 6 9
|
syl2anc |
|
| 11 |
10
|
biimpa |
|
| 12 |
|
reeanv |
|
| 13 |
|
eqtr2 |
|
| 14 |
5
|
ad2antrr |
|
| 15 |
6
|
ad2antrr |
|
| 16 |
7
|
ad2antrr |
|
| 17 |
8
|
ad2antrr |
|
| 18 |
|
simplrl |
|
| 19 |
|
simplrr |
|
| 20 |
|
simprl |
|
| 21 |
|
simprr |
|
| 22 |
1 3 4 14 15 16 17 18 19 20 21
|
subgdisjb |
|
| 23 |
|
simpl |
|
| 24 |
22 23
|
biimtrdi |
|
| 25 |
13 24
|
syl5 |
|
| 26 |
25
|
rexlimdvva |
|
| 27 |
12 26
|
biimtrrid |
|
| 28 |
27
|
ralrimivva |
|
| 29 |
28
|
adantr |
|
| 30 |
|
oveq1 |
|
| 31 |
30
|
eqeq2d |
|
| 32 |
31
|
rexbidv |
|
| 33 |
|
oveq2 |
|
| 34 |
33
|
eqeq2d |
|
| 35 |
34
|
cbvrexvw |
|
| 36 |
32 35
|
bitrdi |
|
| 37 |
36
|
reu4 |
|
| 38 |
11 29 37
|
sylanbrc |
|