| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pj1eu.a |
⊢ + = ( +g ‘ 𝐺 ) |
| 2 |
|
pj1eu.s |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
| 3 |
|
pj1eu.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 4 |
|
pj1eu.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
| 5 |
|
pj1eu.2 |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 6 |
|
pj1eu.3 |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 7 |
|
pj1eu.4 |
⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) |
| 8 |
|
pj1eu.5 |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) |
| 9 |
|
pj1f.p |
⊢ 𝑃 = ( proj1 ‘ 𝐺 ) |
| 10 |
|
subgrcl |
⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 11 |
5 10
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 13 |
12
|
subgss |
⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 14 |
5 13
|
syl |
⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 15 |
12
|
subgss |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 16 |
6 15
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 17 |
12 1 2 9
|
pj1fval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑇 𝑃 𝑈 ) = ( 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) ↦ ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) |
| 18 |
11 14 16 17
|
syl3anc |
⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) = ( 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) ↦ ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) |
| 19 |
1 2 3 4 5 6 7 8
|
pj1eu |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ∃! 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) |
| 20 |
|
riotacl |
⊢ ( ∃! 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) → ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ∈ 𝑇 ) |
| 21 |
19 20
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ( ℩ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ∈ 𝑇 ) |
| 22 |
18 21
|
fmpt3d |
⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑇 ) |