Metamath Proof Explorer


Theorem pj1f

Description: The left projection function maps a direct subspace sum onto the left factor. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses pj1eu.a + = ( +g𝐺 )
pj1eu.s = ( LSSum ‘ 𝐺 )
pj1eu.o 0 = ( 0g𝐺 )
pj1eu.z 𝑍 = ( Cntz ‘ 𝐺 )
pj1eu.2 ( 𝜑𝑇 ∈ ( SubGrp ‘ 𝐺 ) )
pj1eu.3 ( 𝜑𝑈 ∈ ( SubGrp ‘ 𝐺 ) )
pj1eu.4 ( 𝜑 → ( 𝑇𝑈 ) = { 0 } )
pj1eu.5 ( 𝜑𝑇 ⊆ ( 𝑍𝑈 ) )
pj1f.p 𝑃 = ( proj1𝐺 )
Assertion pj1f ( 𝜑 → ( 𝑇 𝑃 𝑈 ) : ( 𝑇 𝑈 ) ⟶ 𝑇 )

Proof

Step Hyp Ref Expression
1 pj1eu.a + = ( +g𝐺 )
2 pj1eu.s = ( LSSum ‘ 𝐺 )
3 pj1eu.o 0 = ( 0g𝐺 )
4 pj1eu.z 𝑍 = ( Cntz ‘ 𝐺 )
5 pj1eu.2 ( 𝜑𝑇 ∈ ( SubGrp ‘ 𝐺 ) )
6 pj1eu.3 ( 𝜑𝑈 ∈ ( SubGrp ‘ 𝐺 ) )
7 pj1eu.4 ( 𝜑 → ( 𝑇𝑈 ) = { 0 } )
8 pj1eu.5 ( 𝜑𝑇 ⊆ ( 𝑍𝑈 ) )
9 pj1f.p 𝑃 = ( proj1𝐺 )
10 subgrcl ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp )
11 5 10 syl ( 𝜑𝐺 ∈ Grp )
12 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
13 12 subgss ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) )
14 5 13 syl ( 𝜑𝑇 ⊆ ( Base ‘ 𝐺 ) )
15 12 subgss ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) )
16 6 15 syl ( 𝜑𝑈 ⊆ ( Base ‘ 𝐺 ) )
17 12 1 2 9 pj1fval ( ( 𝐺 ∈ Grp ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑇 𝑃 𝑈 ) = ( 𝑧 ∈ ( 𝑇 𝑈 ) ↦ ( 𝑥𝑇𝑦𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) )
18 11 14 16 17 syl3anc ( 𝜑 → ( 𝑇 𝑃 𝑈 ) = ( 𝑧 ∈ ( 𝑇 𝑈 ) ↦ ( 𝑥𝑇𝑦𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) )
19 1 2 3 4 5 6 7 8 pj1eu ( ( 𝜑𝑧 ∈ ( 𝑇 𝑈 ) ) → ∃! 𝑥𝑇𝑦𝑈 𝑧 = ( 𝑥 + 𝑦 ) )
20 riotacl ( ∃! 𝑥𝑇𝑦𝑈 𝑧 = ( 𝑥 + 𝑦 ) → ( 𝑥𝑇𝑦𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ∈ 𝑇 )
21 19 20 syl ( ( 𝜑𝑧 ∈ ( 𝑇 𝑈 ) ) → ( 𝑥𝑇𝑦𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ∈ 𝑇 )
22 18 21 fmpt3d ( 𝜑 → ( 𝑇 𝑃 𝑈 ) : ( 𝑇 𝑈 ) ⟶ 𝑇 )