Metamath Proof Explorer


Theorem pj1fval

Description: The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015) (Revised by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses pj1fval.v 𝐵 = ( Base ‘ 𝐺 )
pj1fval.a + = ( +g𝐺 )
pj1fval.s = ( LSSum ‘ 𝐺 )
pj1fval.p 𝑃 = ( proj1𝐺 )
Assertion pj1fval ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) → ( 𝑇 𝑃 𝑈 ) = ( 𝑧 ∈ ( 𝑇 𝑈 ) ↦ ( 𝑥𝑇𝑦𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) )

Proof

Step Hyp Ref Expression
1 pj1fval.v 𝐵 = ( Base ‘ 𝐺 )
2 pj1fval.a + = ( +g𝐺 )
3 pj1fval.s = ( LSSum ‘ 𝐺 )
4 pj1fval.p 𝑃 = ( proj1𝐺 )
5 elex ( 𝐺𝑉𝐺 ∈ V )
6 5 3ad2ant1 ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) → 𝐺 ∈ V )
7 fveq2 ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) )
8 7 1 eqtr4di ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝐵 )
9 8 pweqd ( 𝑔 = 𝐺 → 𝒫 ( Base ‘ 𝑔 ) = 𝒫 𝐵 )
10 fveq2 ( 𝑔 = 𝐺 → ( LSSum ‘ 𝑔 ) = ( LSSum ‘ 𝐺 ) )
11 10 3 eqtr4di ( 𝑔 = 𝐺 → ( LSSum ‘ 𝑔 ) = )
12 11 oveqd ( 𝑔 = 𝐺 → ( 𝑡 ( LSSum ‘ 𝑔 ) 𝑢 ) = ( 𝑡 𝑢 ) )
13 fveq2 ( 𝑔 = 𝐺 → ( +g𝑔 ) = ( +g𝐺 ) )
14 13 2 eqtr4di ( 𝑔 = 𝐺 → ( +g𝑔 ) = + )
15 14 oveqd ( 𝑔 = 𝐺 → ( 𝑥 ( +g𝑔 ) 𝑦 ) = ( 𝑥 + 𝑦 ) )
16 15 eqeq2d ( 𝑔 = 𝐺 → ( 𝑧 = ( 𝑥 ( +g𝑔 ) 𝑦 ) ↔ 𝑧 = ( 𝑥 + 𝑦 ) ) )
17 16 rexbidv ( 𝑔 = 𝐺 → ( ∃ 𝑦𝑢 𝑧 = ( 𝑥 ( +g𝑔 ) 𝑦 ) ↔ ∃ 𝑦𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) )
18 17 riotabidv ( 𝑔 = 𝐺 → ( 𝑥𝑡𝑦𝑢 𝑧 = ( 𝑥 ( +g𝑔 ) 𝑦 ) ) = ( 𝑥𝑡𝑦𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) )
19 12 18 mpteq12dv ( 𝑔 = 𝐺 → ( 𝑧 ∈ ( 𝑡 ( LSSum ‘ 𝑔 ) 𝑢 ) ↦ ( 𝑥𝑡𝑦𝑢 𝑧 = ( 𝑥 ( +g𝑔 ) 𝑦 ) ) ) = ( 𝑧 ∈ ( 𝑡 𝑢 ) ↦ ( 𝑥𝑡𝑦𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) ) )
20 9 9 19 mpoeq123dv ( 𝑔 = 𝐺 → ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑔 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑔 ) ↦ ( 𝑧 ∈ ( 𝑡 ( LSSum ‘ 𝑔 ) 𝑢 ) ↦ ( 𝑥𝑡𝑦𝑢 𝑧 = ( 𝑥 ( +g𝑔 ) 𝑦 ) ) ) ) = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ( 𝑧 ∈ ( 𝑡 𝑢 ) ↦ ( 𝑥𝑡𝑦𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) )
21 df-pj1 proj1 = ( 𝑔 ∈ V ↦ ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑔 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑔 ) ↦ ( 𝑧 ∈ ( 𝑡 ( LSSum ‘ 𝑔 ) 𝑢 ) ↦ ( 𝑥𝑡𝑦𝑢 𝑧 = ( 𝑥 ( +g𝑔 ) 𝑦 ) ) ) ) )
22 1 fvexi 𝐵 ∈ V
23 22 pwex 𝒫 𝐵 ∈ V
24 23 23 mpoex ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ( 𝑧 ∈ ( 𝑡 𝑢 ) ↦ ( 𝑥𝑡𝑦𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) ∈ V
25 20 21 24 fvmpt ( 𝐺 ∈ V → ( proj1𝐺 ) = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ( 𝑧 ∈ ( 𝑡 𝑢 ) ↦ ( 𝑥𝑡𝑦𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) )
26 6 25 syl ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) → ( proj1𝐺 ) = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ( 𝑧 ∈ ( 𝑡 𝑢 ) ↦ ( 𝑥𝑡𝑦𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) )
27 4 26 syl5eq ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) → 𝑃 = ( 𝑡 ∈ 𝒫 𝐵 , 𝑢 ∈ 𝒫 𝐵 ↦ ( 𝑧 ∈ ( 𝑡 𝑢 ) ↦ ( 𝑥𝑡𝑦𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) ) ) )
28 oveq12 ( ( 𝑡 = 𝑇𝑢 = 𝑈 ) → ( 𝑡 𝑢 ) = ( 𝑇 𝑈 ) )
29 28 adantl ( ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) ∧ ( 𝑡 = 𝑇𝑢 = 𝑈 ) ) → ( 𝑡 𝑢 ) = ( 𝑇 𝑈 ) )
30 simprl ( ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) ∧ ( 𝑡 = 𝑇𝑢 = 𝑈 ) ) → 𝑡 = 𝑇 )
31 simprr ( ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) ∧ ( 𝑡 = 𝑇𝑢 = 𝑈 ) ) → 𝑢 = 𝑈 )
32 31 rexeqdv ( ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) ∧ ( 𝑡 = 𝑇𝑢 = 𝑈 ) ) → ( ∃ 𝑦𝑢 𝑧 = ( 𝑥 + 𝑦 ) ↔ ∃ 𝑦𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) )
33 30 32 riotaeqbidv ( ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) ∧ ( 𝑡 = 𝑇𝑢 = 𝑈 ) ) → ( 𝑥𝑡𝑦𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) = ( 𝑥𝑇𝑦𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) )
34 29 33 mpteq12dv ( ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) ∧ ( 𝑡 = 𝑇𝑢 = 𝑈 ) ) → ( 𝑧 ∈ ( 𝑡 𝑢 ) ↦ ( 𝑥𝑡𝑦𝑢 𝑧 = ( 𝑥 + 𝑦 ) ) ) = ( 𝑧 ∈ ( 𝑇 𝑈 ) ↦ ( 𝑥𝑇𝑦𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) )
35 simp2 ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) → 𝑇𝐵 )
36 22 elpw2 ( 𝑇 ∈ 𝒫 𝐵𝑇𝐵 )
37 35 36 sylibr ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) → 𝑇 ∈ 𝒫 𝐵 )
38 simp3 ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) → 𝑈𝐵 )
39 22 elpw2 ( 𝑈 ∈ 𝒫 𝐵𝑈𝐵 )
40 38 39 sylibr ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) → 𝑈 ∈ 𝒫 𝐵 )
41 ovex ( 𝑇 𝑈 ) ∈ V
42 41 mptex ( 𝑧 ∈ ( 𝑇 𝑈 ) ↦ ( 𝑥𝑇𝑦𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) ∈ V
43 42 a1i ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) → ( 𝑧 ∈ ( 𝑇 𝑈 ) ↦ ( 𝑥𝑇𝑦𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) ∈ V )
44 27 34 37 40 43 ovmpod ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) → ( 𝑇 𝑃 𝑈 ) = ( 𝑧 ∈ ( 𝑇 𝑈 ) ↦ ( 𝑥𝑇𝑦𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) )