Metamath Proof Explorer


Theorem pj1val

Description: The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015) (Revised by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses pj1fval.v 𝐵 = ( Base ‘ 𝐺 )
pj1fval.a + = ( +g𝐺 )
pj1fval.s = ( LSSum ‘ 𝐺 )
pj1fval.p 𝑃 = ( proj1𝐺 )
Assertion pj1val ( ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) ∧ 𝑋 ∈ ( 𝑇 𝑈 ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) = ( 𝑥𝑇𝑦𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 pj1fval.v 𝐵 = ( Base ‘ 𝐺 )
2 pj1fval.a + = ( +g𝐺 )
3 pj1fval.s = ( LSSum ‘ 𝐺 )
4 pj1fval.p 𝑃 = ( proj1𝐺 )
5 1 2 3 4 pj1fval ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) → ( 𝑇 𝑃 𝑈 ) = ( 𝑧 ∈ ( 𝑇 𝑈 ) ↦ ( 𝑥𝑇𝑦𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) )
6 5 adantr ( ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) ∧ 𝑋 ∈ ( 𝑇 𝑈 ) ) → ( 𝑇 𝑃 𝑈 ) = ( 𝑧 ∈ ( 𝑇 𝑈 ) ↦ ( 𝑥𝑇𝑦𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) ) )
7 simpr ( ( ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) ∧ 𝑋 ∈ ( 𝑇 𝑈 ) ) ∧ 𝑧 = 𝑋 ) → 𝑧 = 𝑋 )
8 7 eqeq1d ( ( ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) ∧ 𝑋 ∈ ( 𝑇 𝑈 ) ) ∧ 𝑧 = 𝑋 ) → ( 𝑧 = ( 𝑥 + 𝑦 ) ↔ 𝑋 = ( 𝑥 + 𝑦 ) ) )
9 8 rexbidv ( ( ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) ∧ 𝑋 ∈ ( 𝑇 𝑈 ) ) ∧ 𝑧 = 𝑋 ) → ( ∃ 𝑦𝑈 𝑧 = ( 𝑥 + 𝑦 ) ↔ ∃ 𝑦𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) )
10 9 riotabidv ( ( ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) ∧ 𝑋 ∈ ( 𝑇 𝑈 ) ) ∧ 𝑧 = 𝑋 ) → ( 𝑥𝑇𝑦𝑈 𝑧 = ( 𝑥 + 𝑦 ) ) = ( 𝑥𝑇𝑦𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) )
11 simpr ( ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) ∧ 𝑋 ∈ ( 𝑇 𝑈 ) ) → 𝑋 ∈ ( 𝑇 𝑈 ) )
12 riotaex ( 𝑥𝑇𝑦𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) ∈ V
13 12 a1i ( ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) ∧ 𝑋 ∈ ( 𝑇 𝑈 ) ) → ( 𝑥𝑇𝑦𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) ∈ V )
14 6 10 11 13 fvmptd ( ( ( 𝐺𝑉𝑇𝐵𝑈𝐵 ) ∧ 𝑋 ∈ ( 𝑇 𝑈 ) ) → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) = ( 𝑥𝑇𝑦𝑈 𝑋 = ( 𝑥 + 𝑦 ) ) )