Metamath Proof Explorer


Theorem pj1val

Description: The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015) (Revised by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses pj1fval.v B=BaseG
pj1fval.a +˙=+G
pj1fval.s ˙=LSSumG
pj1fval.p P=proj1G
Assertion pj1val GVTBUBXT˙UTPUX=ιxT|yUX=x+˙y

Proof

Step Hyp Ref Expression
1 pj1fval.v B=BaseG
2 pj1fval.a +˙=+G
3 pj1fval.s ˙=LSSumG
4 pj1fval.p P=proj1G
5 1 2 3 4 pj1fval GVTBUBTPU=zT˙UιxT|yUz=x+˙y
6 5 adantr GVTBUBXT˙UTPU=zT˙UιxT|yUz=x+˙y
7 simpr GVTBUBXT˙Uz=Xz=X
8 7 eqeq1d GVTBUBXT˙Uz=Xz=x+˙yX=x+˙y
9 8 rexbidv GVTBUBXT˙Uz=XyUz=x+˙yyUX=x+˙y
10 9 riotabidv GVTBUBXT˙Uz=XιxT|yUz=x+˙y=ιxT|yUX=x+˙y
11 simpr GVTBUBXT˙UXT˙U
12 riotaex ιxT|yUX=x+˙yV
13 12 a1i GVTBUBXT˙UιxT|yUX=x+˙yV
14 6 10 11 13 fvmptd GVTBUBXT˙UTPUX=ιxT|yUX=x+˙y