Metamath Proof Explorer


Definition df-pj1

Description: Define the left projection function, which takes two subgroups t , u with trivial intersection and returns a function mapping the elements of the subgroup sum t + u to their projections onto t . (The other projection function can be obtained by swapping the roles of t and u .) (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion df-pj1 proj1 = ( 𝑤 ∈ V ↦ ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑤 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ( 𝑧 ∈ ( 𝑡 ( LSSum ‘ 𝑤 ) 𝑢 ) ↦ ( 𝑥𝑡𝑦𝑢 𝑧 = ( 𝑥 ( +g𝑤 ) 𝑦 ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpj1 proj1
1 vw 𝑤
2 cvv V
3 vt 𝑡
4 cbs Base
5 1 cv 𝑤
6 5 4 cfv ( Base ‘ 𝑤 )
7 6 cpw 𝒫 ( Base ‘ 𝑤 )
8 vu 𝑢
9 vz 𝑧
10 3 cv 𝑡
11 clsm LSSum
12 5 11 cfv ( LSSum ‘ 𝑤 )
13 8 cv 𝑢
14 10 13 12 co ( 𝑡 ( LSSum ‘ 𝑤 ) 𝑢 )
15 vx 𝑥
16 vy 𝑦
17 9 cv 𝑧
18 15 cv 𝑥
19 cplusg +g
20 5 19 cfv ( +g𝑤 )
21 16 cv 𝑦
22 18 21 20 co ( 𝑥 ( +g𝑤 ) 𝑦 )
23 17 22 wceq 𝑧 = ( 𝑥 ( +g𝑤 ) 𝑦 )
24 23 16 13 wrex 𝑦𝑢 𝑧 = ( 𝑥 ( +g𝑤 ) 𝑦 )
25 24 15 10 crio ( 𝑥𝑡𝑦𝑢 𝑧 = ( 𝑥 ( +g𝑤 ) 𝑦 ) )
26 9 14 25 cmpt ( 𝑧 ∈ ( 𝑡 ( LSSum ‘ 𝑤 ) 𝑢 ) ↦ ( 𝑥𝑡𝑦𝑢 𝑧 = ( 𝑥 ( +g𝑤 ) 𝑦 ) ) )
27 3 8 7 7 26 cmpo ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑤 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ( 𝑧 ∈ ( 𝑡 ( LSSum ‘ 𝑤 ) 𝑢 ) ↦ ( 𝑥𝑡𝑦𝑢 𝑧 = ( 𝑥 ( +g𝑤 ) 𝑦 ) ) ) )
28 1 2 27 cmpt ( 𝑤 ∈ V ↦ ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑤 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ( 𝑧 ∈ ( 𝑡 ( LSSum ‘ 𝑤 ) 𝑢 ) ↦ ( 𝑥𝑡𝑦𝑢 𝑧 = ( 𝑥 ( +g𝑤 ) 𝑦 ) ) ) ) )
29 0 28 wceq proj1 = ( 𝑤 ∈ V ↦ ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑤 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ( 𝑧 ∈ ( 𝑡 ( LSSum ‘ 𝑤 ) 𝑢 ) ↦ ( 𝑥𝑡𝑦𝑢 𝑧 = ( 𝑥 ( +g𝑤 ) 𝑦 ) ) ) ) )