Metamath Proof Explorer


Definition df-pj1

Description: Define the left projection function, which takes two subgroups t , u with trivial intersection and returns a function mapping the elements of the subgroup sum t + u to their projections onto t . (The other projection function can be obtained by swapping the roles of t and u .) (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion df-pj1 proj1=wVt𝒫Basew,u𝒫BasewztLSSumwuιxt|yuz=x+wy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpj1 classproj1
1 vw setvarw
2 cvv classV
3 vt setvart
4 cbs classBase
5 1 cv setvarw
6 5 4 cfv classBasew
7 6 cpw class𝒫Basew
8 vu setvaru
9 vz setvarz
10 3 cv setvart
11 clsm classLSSum
12 5 11 cfv classLSSumw
13 8 cv setvaru
14 10 13 12 co classtLSSumwu
15 vx setvarx
16 vy setvary
17 9 cv setvarz
18 15 cv setvarx
19 cplusg class+𝑔
20 5 19 cfv class+w
21 16 cv setvary
22 18 21 20 co classx+wy
23 17 22 wceq wffz=x+wy
24 23 16 13 wrex wffyuz=x+wy
25 24 15 10 crio classιxt|yuz=x+wy
26 9 14 25 cmpt classztLSSumwuιxt|yuz=x+wy
27 3 8 7 7 26 cmpo classt𝒫Basew,u𝒫BasewztLSSumwuιxt|yuz=x+wy
28 1 2 27 cmpt classwVt𝒫Basew,u𝒫BasewztLSSumwuιxt|yuz=x+wy
29 0 28 wceq wffproj1=wVt𝒫Basew,u𝒫BasewztLSSumwuιxt|yuz=x+wy