| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pj1eu.a |
|- .+ = ( +g ` G ) |
| 2 |
|
pj1eu.s |
|- .(+) = ( LSSum ` G ) |
| 3 |
|
pj1eu.o |
|- .0. = ( 0g ` G ) |
| 4 |
|
pj1eu.z |
|- Z = ( Cntz ` G ) |
| 5 |
|
pj1eu.2 |
|- ( ph -> T e. ( SubGrp ` G ) ) |
| 6 |
|
pj1eu.3 |
|- ( ph -> U e. ( SubGrp ` G ) ) |
| 7 |
|
pj1eu.4 |
|- ( ph -> ( T i^i U ) = { .0. } ) |
| 8 |
|
pj1eu.5 |
|- ( ph -> T C_ ( Z ` U ) ) |
| 9 |
|
pj1f.p |
|- P = ( proj1 ` G ) |
| 10 |
|
eqid |
|- ( Base ` ( G |`s ( T .(+) U ) ) ) = ( Base ` ( G |`s ( T .(+) U ) ) ) |
| 11 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 12 |
|
ovex |
|- ( T .(+) U ) e. _V |
| 13 |
|
eqid |
|- ( G |`s ( T .(+) U ) ) = ( G |`s ( T .(+) U ) ) |
| 14 |
13 1
|
ressplusg |
|- ( ( T .(+) U ) e. _V -> .+ = ( +g ` ( G |`s ( T .(+) U ) ) ) ) |
| 15 |
12 14
|
ax-mp |
|- .+ = ( +g ` ( G |`s ( T .(+) U ) ) ) |
| 16 |
2 4
|
lsmsubg |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( T .(+) U ) e. ( SubGrp ` G ) ) |
| 17 |
5 6 8 16
|
syl3anc |
|- ( ph -> ( T .(+) U ) e. ( SubGrp ` G ) ) |
| 18 |
13
|
subggrp |
|- ( ( T .(+) U ) e. ( SubGrp ` G ) -> ( G |`s ( T .(+) U ) ) e. Grp ) |
| 19 |
17 18
|
syl |
|- ( ph -> ( G |`s ( T .(+) U ) ) e. Grp ) |
| 20 |
|
subgrcl |
|- ( T e. ( SubGrp ` G ) -> G e. Grp ) |
| 21 |
5 20
|
syl |
|- ( ph -> G e. Grp ) |
| 22 |
1 2 3 4 5 6 7 8 9
|
pj1f |
|- ( ph -> ( T P U ) : ( T .(+) U ) --> T ) |
| 23 |
11
|
subgss |
|- ( T e. ( SubGrp ` G ) -> T C_ ( Base ` G ) ) |
| 24 |
5 23
|
syl |
|- ( ph -> T C_ ( Base ` G ) ) |
| 25 |
22 24
|
fssd |
|- ( ph -> ( T P U ) : ( T .(+) U ) --> ( Base ` G ) ) |
| 26 |
13
|
subgbas |
|- ( ( T .(+) U ) e. ( SubGrp ` G ) -> ( T .(+) U ) = ( Base ` ( G |`s ( T .(+) U ) ) ) ) |
| 27 |
17 26
|
syl |
|- ( ph -> ( T .(+) U ) = ( Base ` ( G |`s ( T .(+) U ) ) ) ) |
| 28 |
27
|
feq2d |
|- ( ph -> ( ( T P U ) : ( T .(+) U ) --> ( Base ` G ) <-> ( T P U ) : ( Base ` ( G |`s ( T .(+) U ) ) ) --> ( Base ` G ) ) ) |
| 29 |
25 28
|
mpbid |
|- ( ph -> ( T P U ) : ( Base ` ( G |`s ( T .(+) U ) ) ) --> ( Base ` G ) ) |
| 30 |
27
|
eleq2d |
|- ( ph -> ( x e. ( T .(+) U ) <-> x e. ( Base ` ( G |`s ( T .(+) U ) ) ) ) ) |
| 31 |
27
|
eleq2d |
|- ( ph -> ( y e. ( T .(+) U ) <-> y e. ( Base ` ( G |`s ( T .(+) U ) ) ) ) ) |
| 32 |
30 31
|
anbi12d |
|- ( ph -> ( ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) <-> ( x e. ( Base ` ( G |`s ( T .(+) U ) ) ) /\ y e. ( Base ` ( G |`s ( T .(+) U ) ) ) ) ) ) |
| 33 |
32
|
biimpar |
|- ( ( ph /\ ( x e. ( Base ` ( G |`s ( T .(+) U ) ) ) /\ y e. ( Base ` ( G |`s ( T .(+) U ) ) ) ) ) -> ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) |
| 34 |
1 2 3 4 5 6 7 8 9
|
pj1id |
|- ( ( ph /\ x e. ( T .(+) U ) ) -> x = ( ( ( T P U ) ` x ) .+ ( ( U P T ) ` x ) ) ) |
| 35 |
34
|
adantrr |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> x = ( ( ( T P U ) ` x ) .+ ( ( U P T ) ` x ) ) ) |
| 36 |
1 2 3 4 5 6 7 8 9
|
pj1id |
|- ( ( ph /\ y e. ( T .(+) U ) ) -> y = ( ( ( T P U ) ` y ) .+ ( ( U P T ) ` y ) ) ) |
| 37 |
36
|
adantrl |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> y = ( ( ( T P U ) ` y ) .+ ( ( U P T ) ` y ) ) ) |
| 38 |
35 37
|
oveq12d |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( x .+ y ) = ( ( ( ( T P U ) ` x ) .+ ( ( U P T ) ` x ) ) .+ ( ( ( T P U ) ` y ) .+ ( ( U P T ) ` y ) ) ) ) |
| 39 |
5
|
adantr |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> T e. ( SubGrp ` G ) ) |
| 40 |
|
grpmnd |
|- ( G e. Grp -> G e. Mnd ) |
| 41 |
39 20 40
|
3syl |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> G e. Mnd ) |
| 42 |
39 23
|
syl |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> T C_ ( Base ` G ) ) |
| 43 |
|
simpl |
|- ( ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) -> x e. ( T .(+) U ) ) |
| 44 |
|
ffvelcdm |
|- ( ( ( T P U ) : ( T .(+) U ) --> T /\ x e. ( T .(+) U ) ) -> ( ( T P U ) ` x ) e. T ) |
| 45 |
22 43 44
|
syl2an |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( T P U ) ` x ) e. T ) |
| 46 |
42 45
|
sseldd |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( T P U ) ` x ) e. ( Base ` G ) ) |
| 47 |
|
simpr |
|- ( ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) -> y e. ( T .(+) U ) ) |
| 48 |
|
ffvelcdm |
|- ( ( ( T P U ) : ( T .(+) U ) --> T /\ y e. ( T .(+) U ) ) -> ( ( T P U ) ` y ) e. T ) |
| 49 |
22 47 48
|
syl2an |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( T P U ) ` y ) e. T ) |
| 50 |
42 49
|
sseldd |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( T P U ) ` y ) e. ( Base ` G ) ) |
| 51 |
6
|
adantr |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> U e. ( SubGrp ` G ) ) |
| 52 |
11
|
subgss |
|- ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) ) |
| 53 |
51 52
|
syl |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> U C_ ( Base ` G ) ) |
| 54 |
1 2 3 4 5 6 7 8 9
|
pj2f |
|- ( ph -> ( U P T ) : ( T .(+) U ) --> U ) |
| 55 |
|
ffvelcdm |
|- ( ( ( U P T ) : ( T .(+) U ) --> U /\ x e. ( T .(+) U ) ) -> ( ( U P T ) ` x ) e. U ) |
| 56 |
54 43 55
|
syl2an |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( U P T ) ` x ) e. U ) |
| 57 |
53 56
|
sseldd |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( U P T ) ` x ) e. ( Base ` G ) ) |
| 58 |
|
ffvelcdm |
|- ( ( ( U P T ) : ( T .(+) U ) --> U /\ y e. ( T .(+) U ) ) -> ( ( U P T ) ` y ) e. U ) |
| 59 |
54 47 58
|
syl2an |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( U P T ) ` y ) e. U ) |
| 60 |
53 59
|
sseldd |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( U P T ) ` y ) e. ( Base ` G ) ) |
| 61 |
8
|
adantr |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> T C_ ( Z ` U ) ) |
| 62 |
61 49
|
sseldd |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( T P U ) ` y ) e. ( Z ` U ) ) |
| 63 |
1 4
|
cntzi |
|- ( ( ( ( T P U ) ` y ) e. ( Z ` U ) /\ ( ( U P T ) ` x ) e. U ) -> ( ( ( T P U ) ` y ) .+ ( ( U P T ) ` x ) ) = ( ( ( U P T ) ` x ) .+ ( ( T P U ) ` y ) ) ) |
| 64 |
62 56 63
|
syl2anc |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( ( T P U ) ` y ) .+ ( ( U P T ) ` x ) ) = ( ( ( U P T ) ` x ) .+ ( ( T P U ) ` y ) ) ) |
| 65 |
11 1 41 46 50 57 60 64
|
mnd4g |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( ( ( T P U ) ` x ) .+ ( ( T P U ) ` y ) ) .+ ( ( ( U P T ) ` x ) .+ ( ( U P T ) ` y ) ) ) = ( ( ( ( T P U ) ` x ) .+ ( ( U P T ) ` x ) ) .+ ( ( ( T P U ) ` y ) .+ ( ( U P T ) ` y ) ) ) ) |
| 66 |
38 65
|
eqtr4d |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( x .+ y ) = ( ( ( ( T P U ) ` x ) .+ ( ( T P U ) ` y ) ) .+ ( ( ( U P T ) ` x ) .+ ( ( U P T ) ` y ) ) ) ) |
| 67 |
7
|
adantr |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( T i^i U ) = { .0. } ) |
| 68 |
1
|
subgcl |
|- ( ( ( T .(+) U ) e. ( SubGrp ` G ) /\ x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) -> ( x .+ y ) e. ( T .(+) U ) ) |
| 69 |
68
|
3expb |
|- ( ( ( T .(+) U ) e. ( SubGrp ` G ) /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( x .+ y ) e. ( T .(+) U ) ) |
| 70 |
17 69
|
sylan |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( x .+ y ) e. ( T .(+) U ) ) |
| 71 |
1
|
subgcl |
|- ( ( T e. ( SubGrp ` G ) /\ ( ( T P U ) ` x ) e. T /\ ( ( T P U ) ` y ) e. T ) -> ( ( ( T P U ) ` x ) .+ ( ( T P U ) ` y ) ) e. T ) |
| 72 |
39 45 49 71
|
syl3anc |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( ( T P U ) ` x ) .+ ( ( T P U ) ` y ) ) e. T ) |
| 73 |
1
|
subgcl |
|- ( ( U e. ( SubGrp ` G ) /\ ( ( U P T ) ` x ) e. U /\ ( ( U P T ) ` y ) e. U ) -> ( ( ( U P T ) ` x ) .+ ( ( U P T ) ` y ) ) e. U ) |
| 74 |
51 56 59 73
|
syl3anc |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( ( U P T ) ` x ) .+ ( ( U P T ) ` y ) ) e. U ) |
| 75 |
1 2 3 4 39 51 67 61 9 70 72 74
|
pj1eq |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( x .+ y ) = ( ( ( ( T P U ) ` x ) .+ ( ( T P U ) ` y ) ) .+ ( ( ( U P T ) ` x ) .+ ( ( U P T ) ` y ) ) ) <-> ( ( ( T P U ) ` ( x .+ y ) ) = ( ( ( T P U ) ` x ) .+ ( ( T P U ) ` y ) ) /\ ( ( U P T ) ` ( x .+ y ) ) = ( ( ( U P T ) ` x ) .+ ( ( U P T ) ` y ) ) ) ) ) |
| 76 |
66 75
|
mpbid |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( ( T P U ) ` ( x .+ y ) ) = ( ( ( T P U ) ` x ) .+ ( ( T P U ) ` y ) ) /\ ( ( U P T ) ` ( x .+ y ) ) = ( ( ( U P T ) ` x ) .+ ( ( U P T ) ` y ) ) ) ) |
| 77 |
76
|
simpld |
|- ( ( ph /\ ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) ) -> ( ( T P U ) ` ( x .+ y ) ) = ( ( ( T P U ) ` x ) .+ ( ( T P U ) ` y ) ) ) |
| 78 |
33 77
|
syldan |
|- ( ( ph /\ ( x e. ( Base ` ( G |`s ( T .(+) U ) ) ) /\ y e. ( Base ` ( G |`s ( T .(+) U ) ) ) ) ) -> ( ( T P U ) ` ( x .+ y ) ) = ( ( ( T P U ) ` x ) .+ ( ( T P U ) ` y ) ) ) |
| 79 |
10 11 15 1 19 21 29 78
|
isghmd |
|- ( ph -> ( T P U ) e. ( ( G |`s ( T .(+) U ) ) GrpHom G ) ) |