| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pj1eu.a |
|
| 2 |
|
pj1eu.s |
|
| 3 |
|
pj1eu.o |
|
| 4 |
|
pj1eu.z |
|
| 5 |
|
pj1eu.2 |
|
| 6 |
|
pj1eu.3 |
|
| 7 |
|
pj1eu.4 |
|
| 8 |
|
pj1eu.5 |
|
| 9 |
|
pj1f.p |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
|
ovex |
|
| 13 |
|
eqid |
|
| 14 |
13 1
|
ressplusg |
|
| 15 |
12 14
|
ax-mp |
|
| 16 |
2 4
|
lsmsubg |
|
| 17 |
5 6 8 16
|
syl3anc |
|
| 18 |
13
|
subggrp |
|
| 19 |
17 18
|
syl |
|
| 20 |
|
subgrcl |
|
| 21 |
5 20
|
syl |
|
| 22 |
1 2 3 4 5 6 7 8 9
|
pj1f |
|
| 23 |
11
|
subgss |
|
| 24 |
5 23
|
syl |
|
| 25 |
22 24
|
fssd |
|
| 26 |
13
|
subgbas |
|
| 27 |
17 26
|
syl |
|
| 28 |
27
|
feq2d |
|
| 29 |
25 28
|
mpbid |
|
| 30 |
27
|
eleq2d |
|
| 31 |
27
|
eleq2d |
|
| 32 |
30 31
|
anbi12d |
|
| 33 |
32
|
biimpar |
|
| 34 |
1 2 3 4 5 6 7 8 9
|
pj1id |
|
| 35 |
34
|
adantrr |
|
| 36 |
1 2 3 4 5 6 7 8 9
|
pj1id |
|
| 37 |
36
|
adantrl |
|
| 38 |
35 37
|
oveq12d |
|
| 39 |
5
|
adantr |
|
| 40 |
|
grpmnd |
|
| 41 |
39 20 40
|
3syl |
|
| 42 |
39 23
|
syl |
|
| 43 |
|
simpl |
|
| 44 |
|
ffvelcdm |
|
| 45 |
22 43 44
|
syl2an |
|
| 46 |
42 45
|
sseldd |
|
| 47 |
|
simpr |
|
| 48 |
|
ffvelcdm |
|
| 49 |
22 47 48
|
syl2an |
|
| 50 |
42 49
|
sseldd |
|
| 51 |
6
|
adantr |
|
| 52 |
11
|
subgss |
|
| 53 |
51 52
|
syl |
|
| 54 |
1 2 3 4 5 6 7 8 9
|
pj2f |
|
| 55 |
|
ffvelcdm |
|
| 56 |
54 43 55
|
syl2an |
|
| 57 |
53 56
|
sseldd |
|
| 58 |
|
ffvelcdm |
|
| 59 |
54 47 58
|
syl2an |
|
| 60 |
53 59
|
sseldd |
|
| 61 |
8
|
adantr |
|
| 62 |
61 49
|
sseldd |
|
| 63 |
1 4
|
cntzi |
|
| 64 |
62 56 63
|
syl2anc |
|
| 65 |
11 1 41 46 50 57 60 64
|
mnd4g |
|
| 66 |
38 65
|
eqtr4d |
|
| 67 |
7
|
adantr |
|
| 68 |
1
|
subgcl |
|
| 69 |
68
|
3expb |
|
| 70 |
17 69
|
sylan |
|
| 71 |
1
|
subgcl |
|
| 72 |
39 45 49 71
|
syl3anc |
|
| 73 |
1
|
subgcl |
|
| 74 |
51 56 59 73
|
syl3anc |
|
| 75 |
1 2 3 4 39 51 67 61 9 70 72 74
|
pj1eq |
|
| 76 |
66 75
|
mpbid |
|
| 77 |
76
|
simpld |
|
| 78 |
33 77
|
syldan |
|
| 79 |
10 11 15 1 19 21 29 78
|
isghmd |
|