| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pj1eu.a |
|
| 2 |
|
pj1eu.s |
|
| 3 |
|
pj1eu.o |
|
| 4 |
|
pj1eu.z |
|
| 5 |
|
pj1eu.2 |
|
| 6 |
|
pj1eu.3 |
|
| 7 |
|
pj1eu.4 |
|
| 8 |
|
pj1eu.5 |
|
| 9 |
|
pj1f.p |
|
| 10 |
|
subgrcl |
|
| 11 |
5 10
|
syl |
|
| 12 |
|
eqid |
|
| 13 |
12
|
subgss |
|
| 14 |
5 13
|
syl |
|
| 15 |
12
|
subgss |
|
| 16 |
6 15
|
syl |
|
| 17 |
11 14 16
|
3jca |
|
| 18 |
12 1 2 9
|
pj1val |
|
| 19 |
17 18
|
sylan |
|
| 20 |
1 2 3 4 5 6 7 8
|
pj1eu |
|
| 21 |
|
riotacl2 |
|
| 22 |
20 21
|
syl |
|
| 23 |
19 22
|
eqeltrd |
|
| 24 |
|
oveq1 |
|
| 25 |
24
|
eqeq2d |
|
| 26 |
25
|
rexbidv |
|
| 27 |
26
|
elrab |
|
| 28 |
27
|
simprbi |
|
| 29 |
23 28
|
syl |
|
| 30 |
|
simprr |
|
| 31 |
11
|
ad2antrr |
|
| 32 |
16
|
ad2antrr |
|
| 33 |
14
|
ad2antrr |
|
| 34 |
|
simplr |
|
| 35 |
2 4
|
lsmcom2 |
|
| 36 |
5 6 8 35
|
syl3anc |
|
| 37 |
36
|
ad2antrr |
|
| 38 |
34 37
|
eleqtrd |
|
| 39 |
12 1 2 9
|
pj1val |
|
| 40 |
31 32 33 38 39
|
syl31anc |
|
| 41 |
1 2 3 4 5 6 7 8 9
|
pj1f |
|
| 42 |
41
|
ad2antrr |
|
| 43 |
42 34
|
ffvelcdmd |
|
| 44 |
8
|
ad2antrr |
|
| 45 |
44 43
|
sseldd |
|
| 46 |
|
simprl |
|
| 47 |
1 4
|
cntzi |
|
| 48 |
45 46 47
|
syl2anc |
|
| 49 |
30 48
|
eqtrd |
|
| 50 |
|
oveq2 |
|
| 51 |
50
|
rspceeqv |
|
| 52 |
43 49 51
|
syl2anc |
|
| 53 |
|
simpll |
|
| 54 |
|
incom |
|
| 55 |
54 7
|
eqtrid |
|
| 56 |
4 5 6 8
|
cntzrecd |
|
| 57 |
1 2 3 4 6 5 55 56
|
pj1eu |
|
| 58 |
53 38 57
|
syl2anc |
|
| 59 |
|
oveq1 |
|
| 60 |
59
|
eqeq2d |
|
| 61 |
60
|
rexbidv |
|
| 62 |
61
|
riota2 |
|
| 63 |
46 58 62
|
syl2anc |
|
| 64 |
52 63
|
mpbid |
|
| 65 |
40 64
|
eqtrd |
|
| 66 |
65
|
oveq2d |
|
| 67 |
30 66
|
eqtr4d |
|
| 68 |
29 67
|
rexlimddv |
|