Metamath Proof Explorer


Theorem pj1eq

Description: Any element of a direct subspace sum can be decomposed uniquely into projections onto the left and right factors. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses pj1eu.a +˙=+G
pj1eu.s ˙=LSSumG
pj1eu.o 0˙=0G
pj1eu.z Z=CntzG
pj1eu.2 φTSubGrpG
pj1eu.3 φUSubGrpG
pj1eu.4 φTU=0˙
pj1eu.5 φTZU
pj1f.p P=proj1G
pj1eq.5 φXT˙U
pj1eq.6 φBT
pj1eq.7 φCU
Assertion pj1eq φX=B+˙CTPUX=BUPTX=C

Proof

Step Hyp Ref Expression
1 pj1eu.a +˙=+G
2 pj1eu.s ˙=LSSumG
3 pj1eu.o 0˙=0G
4 pj1eu.z Z=CntzG
5 pj1eu.2 φTSubGrpG
6 pj1eu.3 φUSubGrpG
7 pj1eu.4 φTU=0˙
8 pj1eu.5 φTZU
9 pj1f.p P=proj1G
10 pj1eq.5 φXT˙U
11 pj1eq.6 φBT
12 pj1eq.7 φCU
13 1 2 3 4 5 6 7 8 9 pj1id φXT˙UX=TPUX+˙UPTX
14 10 13 mpdan φX=TPUX+˙UPTX
15 14 eqeq1d φX=B+˙CTPUX+˙UPTX=B+˙C
16 1 2 3 4 5 6 7 8 9 pj1f φTPU:T˙UT
17 16 10 ffvelcdmd φTPUXT
18 1 2 3 4 5 6 7 8 9 pj2f φUPT:T˙UU
19 18 10 ffvelcdmd φUPTXU
20 1 3 4 5 6 7 8 17 11 19 12 subgdisjb φTPUX+˙UPTX=B+˙CTPUX=BUPTX=C
21 15 20 bitrd φX=B+˙CTPUX=BUPTX=C