Metamath Proof Explorer


Theorem pj1eq

Description: Any element of a direct subspace sum can be decomposed uniquely into projections onto the left and right factors. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses pj1eu.a + ˙ = + G
pj1eu.s ˙ = LSSum G
pj1eu.o 0 ˙ = 0 G
pj1eu.z Z = Cntz G
pj1eu.2 φ T SubGrp G
pj1eu.3 φ U SubGrp G
pj1eu.4 φ T U = 0 ˙
pj1eu.5 φ T Z U
pj1f.p P = proj 1 G
pj1eq.5 φ X T ˙ U
pj1eq.6 φ B T
pj1eq.7 φ C U
Assertion pj1eq φ X = B + ˙ C T P U X = B U P T X = C

Proof

Step Hyp Ref Expression
1 pj1eu.a + ˙ = + G
2 pj1eu.s ˙ = LSSum G
3 pj1eu.o 0 ˙ = 0 G
4 pj1eu.z Z = Cntz G
5 pj1eu.2 φ T SubGrp G
6 pj1eu.3 φ U SubGrp G
7 pj1eu.4 φ T U = 0 ˙
8 pj1eu.5 φ T Z U
9 pj1f.p P = proj 1 G
10 pj1eq.5 φ X T ˙ U
11 pj1eq.6 φ B T
12 pj1eq.7 φ C U
13 1 2 3 4 5 6 7 8 9 pj1id φ X T ˙ U X = T P U X + ˙ U P T X
14 10 13 mpdan φ X = T P U X + ˙ U P T X
15 14 eqeq1d φ X = B + ˙ C T P U X + ˙ U P T X = B + ˙ C
16 1 2 3 4 5 6 7 8 9 pj1f φ T P U : T ˙ U T
17 16 10 ffvelrnd φ T P U X T
18 1 2 3 4 5 6 7 8 9 pj2f φ U P T : T ˙ U U
19 18 10 ffvelrnd φ U P T X U
20 1 3 4 5 6 7 8 17 11 19 12 subgdisjb φ T P U X + ˙ U P T X = B + ˙ C T P U X = B U P T X = C
21 15 20 bitrd φ X = B + ˙ C T P U X = B U P T X = C