Metamath Proof Explorer


Theorem pj1lid

Description: The left projection function is the identity on the left subspace. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses pj1eu.a +˙=+G
pj1eu.s ˙=LSSumG
pj1eu.o 0˙=0G
pj1eu.z Z=CntzG
pj1eu.2 φTSubGrpG
pj1eu.3 φUSubGrpG
pj1eu.4 φTU=0˙
pj1eu.5 φTZU
pj1f.p P=proj1G
Assertion pj1lid φXTTPUX=X

Proof

Step Hyp Ref Expression
1 pj1eu.a +˙=+G
2 pj1eu.s ˙=LSSumG
3 pj1eu.o 0˙=0G
4 pj1eu.z Z=CntzG
5 pj1eu.2 φTSubGrpG
6 pj1eu.3 φUSubGrpG
7 pj1eu.4 φTU=0˙
8 pj1eu.5 φTZU
9 pj1f.p P=proj1G
10 5 adantr φXTTSubGrpG
11 subgrcl TSubGrpGGGrp
12 10 11 syl φXTGGrp
13 eqid BaseG=BaseG
14 13 subgss TSubGrpGTBaseG
15 5 14 syl φTBaseG
16 15 sselda φXTXBaseG
17 13 1 3 grprid GGrpXBaseGX+˙0˙=X
18 12 16 17 syl2anc φXTX+˙0˙=X
19 18 eqcomd φXTX=X+˙0˙
20 6 adantr φXTUSubGrpG
21 7 adantr φXTTU=0˙
22 8 adantr φXTTZU
23 2 lsmub1 TSubGrpGUSubGrpGTT˙U
24 5 6 23 syl2anc φTT˙U
25 24 sselda φXTXT˙U
26 simpr φXTXT
27 3 subg0cl USubGrpG0˙U
28 20 27 syl φXT0˙U
29 1 2 3 4 10 20 21 22 9 25 26 28 pj1eq φXTX=X+˙0˙TPUX=XUPTX=0˙
30 19 29 mpbid φXTTPUX=XUPTX=0˙
31 30 simpld φXTTPUX=X