Metamath Proof Explorer


Theorem pj1rid

Description: The left projection function is the zero operator on the right subspace. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses pj1eu.a +˙=+G
pj1eu.s ˙=LSSumG
pj1eu.o 0˙=0G
pj1eu.z Z=CntzG
pj1eu.2 φTSubGrpG
pj1eu.3 φUSubGrpG
pj1eu.4 φTU=0˙
pj1eu.5 φTZU
pj1f.p P=proj1G
Assertion pj1rid φXUTPUX=0˙

Proof

Step Hyp Ref Expression
1 pj1eu.a +˙=+G
2 pj1eu.s ˙=LSSumG
3 pj1eu.o 0˙=0G
4 pj1eu.z Z=CntzG
5 pj1eu.2 φTSubGrpG
6 pj1eu.3 φUSubGrpG
7 pj1eu.4 φTU=0˙
8 pj1eu.5 φTZU
9 pj1f.p P=proj1G
10 5 adantr φXUTSubGrpG
11 subgrcl TSubGrpGGGrp
12 10 11 syl φXUGGrp
13 eqid BaseG=BaseG
14 13 subgss USubGrpGUBaseG
15 6 14 syl φUBaseG
16 15 sselda φXUXBaseG
17 13 1 3 grplid GGrpXBaseG0˙+˙X=X
18 12 16 17 syl2anc φXU0˙+˙X=X
19 18 eqcomd φXUX=0˙+˙X
20 6 adantr φXUUSubGrpG
21 7 adantr φXUTU=0˙
22 8 adantr φXUTZU
23 2 lsmub2 TSubGrpGUSubGrpGUT˙U
24 5 6 23 syl2anc φUT˙U
25 24 sselda φXUXT˙U
26 3 subg0cl TSubGrpG0˙T
27 10 26 syl φXU0˙T
28 simpr φXUXU
29 1 2 3 4 10 20 21 22 9 25 27 28 pj1eq φXUX=0˙+˙XTPUX=0˙UPTX=X
30 19 29 mpbid φXUTPUX=0˙UPTX=X
31 30 simpld φXUTPUX=0˙