| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pj1eu.a |
|- .+ = ( +g ` G ) |
| 2 |
|
pj1eu.s |
|- .(+) = ( LSSum ` G ) |
| 3 |
|
pj1eu.o |
|- .0. = ( 0g ` G ) |
| 4 |
|
pj1eu.z |
|- Z = ( Cntz ` G ) |
| 5 |
|
pj1eu.2 |
|- ( ph -> T e. ( SubGrp ` G ) ) |
| 6 |
|
pj1eu.3 |
|- ( ph -> U e. ( SubGrp ` G ) ) |
| 7 |
|
pj1eu.4 |
|- ( ph -> ( T i^i U ) = { .0. } ) |
| 8 |
|
pj1eu.5 |
|- ( ph -> T C_ ( Z ` U ) ) |
| 9 |
|
pj1f.p |
|- P = ( proj1 ` G ) |
| 10 |
5
|
adantr |
|- ( ( ph /\ X e. T ) -> T e. ( SubGrp ` G ) ) |
| 11 |
|
subgrcl |
|- ( T e. ( SubGrp ` G ) -> G e. Grp ) |
| 12 |
10 11
|
syl |
|- ( ( ph /\ X e. T ) -> G e. Grp ) |
| 13 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 14 |
13
|
subgss |
|- ( T e. ( SubGrp ` G ) -> T C_ ( Base ` G ) ) |
| 15 |
5 14
|
syl |
|- ( ph -> T C_ ( Base ` G ) ) |
| 16 |
15
|
sselda |
|- ( ( ph /\ X e. T ) -> X e. ( Base ` G ) ) |
| 17 |
13 1 3
|
grprid |
|- ( ( G e. Grp /\ X e. ( Base ` G ) ) -> ( X .+ .0. ) = X ) |
| 18 |
12 16 17
|
syl2anc |
|- ( ( ph /\ X e. T ) -> ( X .+ .0. ) = X ) |
| 19 |
18
|
eqcomd |
|- ( ( ph /\ X e. T ) -> X = ( X .+ .0. ) ) |
| 20 |
6
|
adantr |
|- ( ( ph /\ X e. T ) -> U e. ( SubGrp ` G ) ) |
| 21 |
7
|
adantr |
|- ( ( ph /\ X e. T ) -> ( T i^i U ) = { .0. } ) |
| 22 |
8
|
adantr |
|- ( ( ph /\ X e. T ) -> T C_ ( Z ` U ) ) |
| 23 |
2
|
lsmub1 |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> T C_ ( T .(+) U ) ) |
| 24 |
5 6 23
|
syl2anc |
|- ( ph -> T C_ ( T .(+) U ) ) |
| 25 |
24
|
sselda |
|- ( ( ph /\ X e. T ) -> X e. ( T .(+) U ) ) |
| 26 |
|
simpr |
|- ( ( ph /\ X e. T ) -> X e. T ) |
| 27 |
3
|
subg0cl |
|- ( U e. ( SubGrp ` G ) -> .0. e. U ) |
| 28 |
20 27
|
syl |
|- ( ( ph /\ X e. T ) -> .0. e. U ) |
| 29 |
1 2 3 4 10 20 21 22 9 25 26 28
|
pj1eq |
|- ( ( ph /\ X e. T ) -> ( X = ( X .+ .0. ) <-> ( ( ( T P U ) ` X ) = X /\ ( ( U P T ) ` X ) = .0. ) ) ) |
| 30 |
19 29
|
mpbid |
|- ( ( ph /\ X e. T ) -> ( ( ( T P U ) ` X ) = X /\ ( ( U P T ) ` X ) = .0. ) ) |
| 31 |
30
|
simpld |
|- ( ( ph /\ X e. T ) -> ( ( T P U ) ` X ) = X ) |