Step |
Hyp |
Ref |
Expression |
1 |
|
pj1eu.a |
⊢ + = ( +g ‘ 𝐺 ) |
2 |
|
pj1eu.s |
⊢ ⊕ = ( LSSum ‘ 𝐺 ) |
3 |
|
pj1eu.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
4 |
|
pj1eu.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
5 |
|
pj1eu.2 |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ) |
6 |
|
pj1eu.3 |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) |
7 |
|
pj1eu.4 |
⊢ ( 𝜑 → ( 𝑇 ∩ 𝑈 ) = { 0 } ) |
8 |
|
pj1eu.5 |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) |
9 |
|
pj1f.p |
⊢ 𝑃 = ( proj1 ‘ 𝐺 ) |
10 |
|
pj1eq.5 |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) |
11 |
|
pj1eq.6 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑇 ) |
12 |
|
pj1eq.7 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) |
13 |
1 2 3 4 5 6 7 8 9
|
pj1id |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) → 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) ) ) |
14 |
10 13
|
mpdan |
⊢ ( 𝜑 → 𝑋 = ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) ) ) |
15 |
14
|
eqeq1d |
⊢ ( 𝜑 → ( 𝑋 = ( 𝐵 + 𝐶 ) ↔ ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) ) = ( 𝐵 + 𝐶 ) ) ) |
16 |
1 2 3 4 5 6 7 8 9
|
pj1f |
⊢ ( 𝜑 → ( 𝑇 𝑃 𝑈 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑇 ) |
17 |
16 10
|
ffvelrnd |
⊢ ( 𝜑 → ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) ∈ 𝑇 ) |
18 |
1 2 3 4 5 6 7 8 9
|
pj2f |
⊢ ( 𝜑 → ( 𝑈 𝑃 𝑇 ) : ( 𝑇 ⊕ 𝑈 ) ⟶ 𝑈 ) |
19 |
18 10
|
ffvelrnd |
⊢ ( 𝜑 → ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) ∈ 𝑈 ) |
20 |
1 3 4 5 6 7 8 17 11 19 12
|
subgdisjb |
⊢ ( 𝜑 → ( ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) + ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) ) = ( 𝐵 + 𝐶 ) ↔ ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) = 𝐵 ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) = 𝐶 ) ) ) |
21 |
15 20
|
bitrd |
⊢ ( 𝜑 → ( 𝑋 = ( 𝐵 + 𝐶 ) ↔ ( ( ( 𝑇 𝑃 𝑈 ) ‘ 𝑋 ) = 𝐵 ∧ ( ( 𝑈 𝑃 𝑇 ) ‘ 𝑋 ) = 𝐶 ) ) ) |