Metamath Proof Explorer


Theorem pj1ghm2

Description: The left projection function is a group homomorphism. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses pj1eu.a +˙=+G
pj1eu.s ˙=LSSumG
pj1eu.o 0˙=0G
pj1eu.z Z=CntzG
pj1eu.2 φTSubGrpG
pj1eu.3 φUSubGrpG
pj1eu.4 φTU=0˙
pj1eu.5 φTZU
pj1f.p P=proj1G
Assertion pj1ghm2 φTPUG𝑠T˙UGrpHomG𝑠T

Proof

Step Hyp Ref Expression
1 pj1eu.a +˙=+G
2 pj1eu.s ˙=LSSumG
3 pj1eu.o 0˙=0G
4 pj1eu.z Z=CntzG
5 pj1eu.2 φTSubGrpG
6 pj1eu.3 φUSubGrpG
7 pj1eu.4 φTU=0˙
8 pj1eu.5 φTZU
9 pj1f.p P=proj1G
10 1 2 3 4 5 6 7 8 9 pj1ghm φTPUG𝑠T˙UGrpHomG
11 1 2 3 4 5 6 7 8 9 pj1f φTPU:T˙UT
12 11 frnd φranTPUT
13 eqid G𝑠T=G𝑠T
14 13 resghm2b TSubGrpGranTPUTTPUG𝑠T˙UGrpHomGTPUG𝑠T˙UGrpHomG𝑠T
15 5 12 14 syl2anc φTPUG𝑠T˙UGrpHomGTPUG𝑠T˙UGrpHomG𝑠T
16 10 15 mpbid φTPUG𝑠T˙UGrpHomG𝑠T