Description: The order of the direct product of groups. (Contributed by Mario Carneiro, 21-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsmhash.p | |
|
lsmhash.o | |
||
lsmhash.z | |
||
lsmhash.t | |
||
lsmhash.u | |
||
lsmhash.i | |
||
lsmhash.s | |
||
lsmhash.1 | |
||
lsmhash.2 | |
||
Assertion | lsmhash | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmhash.p | |
|
2 | lsmhash.o | |
|
3 | lsmhash.z | |
|
4 | lsmhash.t | |
|
5 | lsmhash.u | |
|
6 | lsmhash.i | |
|
7 | lsmhash.s | |
|
8 | lsmhash.1 | |
|
9 | lsmhash.2 | |
|
10 | ovexd | |
|
11 | eqid | |
|
12 | eqid | |
|
13 | eqid | |
|
14 | 12 1 2 3 4 5 6 7 13 | pj1f | |
15 | 14 | ffvelcdmda | |
16 | 12 1 2 3 4 5 6 7 13 | pj2f | |
17 | 16 | ffvelcdmda | |
18 | 15 17 | opelxpd | |
19 | 4 5 | jca | |
20 | xp1st | |
|
21 | xp2nd | |
|
22 | 20 21 | jca | |
23 | 12 1 | lsmelvali | |
24 | 19 22 23 | syl2an | |
25 | 4 | adantr | |
26 | 5 | adantr | |
27 | 6 | adantr | |
28 | 7 | adantr | |
29 | simprl | |
|
30 | 20 | ad2antll | |
31 | 21 | ad2antll | |
32 | 12 1 2 3 25 26 27 28 13 29 30 31 | pj1eq | |
33 | eqcom | |
|
34 | eqcom | |
|
35 | 33 34 | anbi12i | |
36 | 32 35 | bitrdi | |
37 | eqop | |
|
38 | 37 | ad2antll | |
39 | 36 38 | bitr4d | |
40 | 11 18 24 39 | f1o2d | |
41 | 10 40 | hasheqf1od | |
42 | hashxp | |
|
43 | 8 9 42 | syl2anc | |
44 | 41 43 | eqtrd | |