Metamath Proof Explorer


Theorem lsmhash

Description: The order of the direct product of groups. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses lsmhash.p ˙=LSSumG
lsmhash.o 0˙=0G
lsmhash.z Z=CntzG
lsmhash.t φTSubGrpG
lsmhash.u φUSubGrpG
lsmhash.i φTU=0˙
lsmhash.s φTZU
lsmhash.1 φTFin
lsmhash.2 φUFin
Assertion lsmhash φT˙U=TU

Proof

Step Hyp Ref Expression
1 lsmhash.p ˙=LSSumG
2 lsmhash.o 0˙=0G
3 lsmhash.z Z=CntzG
4 lsmhash.t φTSubGrpG
5 lsmhash.u φUSubGrpG
6 lsmhash.i φTU=0˙
7 lsmhash.s φTZU
8 lsmhash.1 φTFin
9 lsmhash.2 φUFin
10 ovexd φT˙UV
11 eqid xT˙UTproj1GUxUproj1GTx=xT˙UTproj1GUxUproj1GTx
12 eqid +G=+G
13 eqid proj1G=proj1G
14 12 1 2 3 4 5 6 7 13 pj1f φTproj1GU:T˙UT
15 14 ffvelcdmda φxT˙UTproj1GUxT
16 12 1 2 3 4 5 6 7 13 pj2f φUproj1GT:T˙UU
17 16 ffvelcdmda φxT˙UUproj1GTxU
18 15 17 opelxpd φxT˙UTproj1GUxUproj1GTxT×U
19 4 5 jca φTSubGrpGUSubGrpG
20 xp1st yT×U1styT
21 xp2nd yT×U2ndyU
22 20 21 jca yT×U1styT2ndyU
23 12 1 lsmelvali TSubGrpGUSubGrpG1styT2ndyU1sty+G2ndyT˙U
24 19 22 23 syl2an φyT×U1sty+G2ndyT˙U
25 4 adantr φxT˙UyT×UTSubGrpG
26 5 adantr φxT˙UyT×UUSubGrpG
27 6 adantr φxT˙UyT×UTU=0˙
28 7 adantr φxT˙UyT×UTZU
29 simprl φxT˙UyT×UxT˙U
30 20 ad2antll φxT˙UyT×U1styT
31 21 ad2antll φxT˙UyT×U2ndyU
32 12 1 2 3 25 26 27 28 13 29 30 31 pj1eq φxT˙UyT×Ux=1sty+G2ndyTproj1GUx=1styUproj1GTx=2ndy
33 eqcom Tproj1GUx=1sty1sty=Tproj1GUx
34 eqcom Uproj1GTx=2ndy2ndy=Uproj1GTx
35 33 34 anbi12i Tproj1GUx=1styUproj1GTx=2ndy1sty=Tproj1GUx2ndy=Uproj1GTx
36 32 35 bitrdi φxT˙UyT×Ux=1sty+G2ndy1sty=Tproj1GUx2ndy=Uproj1GTx
37 eqop yT×Uy=Tproj1GUxUproj1GTx1sty=Tproj1GUx2ndy=Uproj1GTx
38 37 ad2antll φxT˙UyT×Uy=Tproj1GUxUproj1GTx1sty=Tproj1GUx2ndy=Uproj1GTx
39 36 38 bitr4d φxT˙UyT×Ux=1sty+G2ndyy=Tproj1GUxUproj1GTx
40 11 18 24 39 f1o2d φxT˙UTproj1GUxUproj1GTx:T˙U1-1 ontoT×U
41 10 40 hasheqf1od φT˙U=T×U
42 hashxp TFinUFinT×U=TU
43 8 9 42 syl2anc φT×U=TU
44 41 43 eqtrd φT˙U=TU