Metamath Proof Explorer


Theorem hashxp

Description: The size of the Cartesian product of two finite sets is the product of their sizes. (Contributed by Paul Chapman, 30-Nov-2012)

Ref Expression
Assertion hashxp AFinBFinA×B=AB

Proof

Step Hyp Ref Expression
1 xpeq2 B=ifBFinBA×B=A×ifBFinB
2 1 fveq2d B=ifBFinBA×B=A×ifBFinB
3 fveq2 B=ifBFinBB=ifBFinB
4 3 oveq2d B=ifBFinBAB=AifBFinB
5 2 4 eqeq12d B=ifBFinBA×B=ABA×ifBFinB=AifBFinB
6 5 imbi2d B=ifBFinBAFinA×B=ABAFinA×ifBFinB=AifBFinB
7 0fin Fin
8 7 elimel ifBFinBFin
9 8 hashxplem AFinA×ifBFinB=AifBFinB
10 6 9 dedth BFinAFinA×B=AB
11 10 impcom AFinBFinA×B=AB