| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpeq2 |
|- ( B = if ( B e. Fin , B , (/) ) -> ( A X. B ) = ( A X. if ( B e. Fin , B , (/) ) ) ) |
| 2 |
1
|
fveq2d |
|- ( B = if ( B e. Fin , B , (/) ) -> ( # ` ( A X. B ) ) = ( # ` ( A X. if ( B e. Fin , B , (/) ) ) ) ) |
| 3 |
|
fveq2 |
|- ( B = if ( B e. Fin , B , (/) ) -> ( # ` B ) = ( # ` if ( B e. Fin , B , (/) ) ) ) |
| 4 |
3
|
oveq2d |
|- ( B = if ( B e. Fin , B , (/) ) -> ( ( # ` A ) x. ( # ` B ) ) = ( ( # ` A ) x. ( # ` if ( B e. Fin , B , (/) ) ) ) ) |
| 5 |
2 4
|
eqeq12d |
|- ( B = if ( B e. Fin , B , (/) ) -> ( ( # ` ( A X. B ) ) = ( ( # ` A ) x. ( # ` B ) ) <-> ( # ` ( A X. if ( B e. Fin , B , (/) ) ) ) = ( ( # ` A ) x. ( # ` if ( B e. Fin , B , (/) ) ) ) ) ) |
| 6 |
5
|
imbi2d |
|- ( B = if ( B e. Fin , B , (/) ) -> ( ( A e. Fin -> ( # ` ( A X. B ) ) = ( ( # ` A ) x. ( # ` B ) ) ) <-> ( A e. Fin -> ( # ` ( A X. if ( B e. Fin , B , (/) ) ) ) = ( ( # ` A ) x. ( # ` if ( B e. Fin , B , (/) ) ) ) ) ) ) |
| 7 |
|
0fi |
|- (/) e. Fin |
| 8 |
7
|
elimel |
|- if ( B e. Fin , B , (/) ) e. Fin |
| 9 |
8
|
hashxplem |
|- ( A e. Fin -> ( # ` ( A X. if ( B e. Fin , B , (/) ) ) ) = ( ( # ` A ) x. ( # ` if ( B e. Fin , B , (/) ) ) ) ) |
| 10 |
6 9
|
dedth |
|- ( B e. Fin -> ( A e. Fin -> ( # ` ( A X. B ) ) = ( ( # ` A ) x. ( # ` B ) ) ) ) |
| 11 |
10
|
impcom |
|- ( ( A e. Fin /\ B e. Fin ) -> ( # ` ( A X. B ) ) = ( ( # ` A ) x. ( # ` B ) ) ) |