| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pj1lmhm.l |
|- L = ( LSubSp ` W ) |
| 2 |
|
pj1lmhm.s |
|- .(+) = ( LSSum ` W ) |
| 3 |
|
pj1lmhm.z |
|- .0. = ( 0g ` W ) |
| 4 |
|
pj1lmhm.p |
|- P = ( proj1 ` W ) |
| 5 |
|
pj1lmhm.1 |
|- ( ph -> W e. LMod ) |
| 6 |
|
pj1lmhm.2 |
|- ( ph -> T e. L ) |
| 7 |
|
pj1lmhm.3 |
|- ( ph -> U e. L ) |
| 8 |
|
pj1lmhm.4 |
|- ( ph -> ( T i^i U ) = { .0. } ) |
| 9 |
1 2 3 4 5 6 7 8
|
pj1lmhm |
|- ( ph -> ( T P U ) e. ( ( W |`s ( T .(+) U ) ) LMHom W ) ) |
| 10 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
| 11 |
|
eqid |
|- ( Cntz ` W ) = ( Cntz ` W ) |
| 12 |
1
|
lsssssubg |
|- ( W e. LMod -> L C_ ( SubGrp ` W ) ) |
| 13 |
5 12
|
syl |
|- ( ph -> L C_ ( SubGrp ` W ) ) |
| 14 |
13 6
|
sseldd |
|- ( ph -> T e. ( SubGrp ` W ) ) |
| 15 |
13 7
|
sseldd |
|- ( ph -> U e. ( SubGrp ` W ) ) |
| 16 |
|
lmodabl |
|- ( W e. LMod -> W e. Abel ) |
| 17 |
5 16
|
syl |
|- ( ph -> W e. Abel ) |
| 18 |
11 17 14 15
|
ablcntzd |
|- ( ph -> T C_ ( ( Cntz ` W ) ` U ) ) |
| 19 |
10 2 3 11 14 15 8 18 4
|
pj1f |
|- ( ph -> ( T P U ) : ( T .(+) U ) --> T ) |
| 20 |
19
|
frnd |
|- ( ph -> ran ( T P U ) C_ T ) |
| 21 |
|
eqid |
|- ( W |`s T ) = ( W |`s T ) |
| 22 |
21 1
|
reslmhm2b |
|- ( ( W e. LMod /\ T e. L /\ ran ( T P U ) C_ T ) -> ( ( T P U ) e. ( ( W |`s ( T .(+) U ) ) LMHom W ) <-> ( T P U ) e. ( ( W |`s ( T .(+) U ) ) LMHom ( W |`s T ) ) ) ) |
| 23 |
5 6 20 22
|
syl3anc |
|- ( ph -> ( ( T P U ) e. ( ( W |`s ( T .(+) U ) ) LMHom W ) <-> ( T P U ) e. ( ( W |`s ( T .(+) U ) ) LMHom ( W |`s T ) ) ) ) |
| 24 |
9 23
|
mpbid |
|- ( ph -> ( T P U ) e. ( ( W |`s ( T .(+) U ) ) LMHom ( W |`s T ) ) ) |