| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjf.k |  |-  K = ( proj ` W ) | 
						
							| 2 |  | eqid |  |-  ( LSubSp ` W ) = ( LSubSp ` W ) | 
						
							| 3 |  | eqid |  |-  ( LSSum ` W ) = ( LSSum ` W ) | 
						
							| 4 |  | eqid |  |-  ( 0g ` W ) = ( 0g ` W ) | 
						
							| 5 |  | eqid |  |-  ( proj1 ` W ) = ( proj1 ` W ) | 
						
							| 6 |  | phllmod |  |-  ( W e. PreHil -> W e. LMod ) | 
						
							| 7 | 6 | adantr |  |-  ( ( W e. PreHil /\ x e. dom K ) -> W e. LMod ) | 
						
							| 8 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 9 |  | eqid |  |-  ( ocv ` W ) = ( ocv ` W ) | 
						
							| 10 | 8 2 9 3 1 | pjdm2 |  |-  ( W e. PreHil -> ( x e. dom K <-> ( x e. ( LSubSp ` W ) /\ ( x ( LSSum ` W ) ( ( ocv ` W ) ` x ) ) = ( Base ` W ) ) ) ) | 
						
							| 11 | 10 | simprbda |  |-  ( ( W e. PreHil /\ x e. dom K ) -> x e. ( LSubSp ` W ) ) | 
						
							| 12 | 8 2 | lssss |  |-  ( x e. ( LSubSp ` W ) -> x C_ ( Base ` W ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( W e. PreHil /\ x e. dom K ) -> x C_ ( Base ` W ) ) | 
						
							| 14 | 8 9 2 | ocvlss |  |-  ( ( W e. PreHil /\ x C_ ( Base ` W ) ) -> ( ( ocv ` W ) ` x ) e. ( LSubSp ` W ) ) | 
						
							| 15 | 13 14 | syldan |  |-  ( ( W e. PreHil /\ x e. dom K ) -> ( ( ocv ` W ) ` x ) e. ( LSubSp ` W ) ) | 
						
							| 16 | 9 2 4 | ocvin |  |-  ( ( W e. PreHil /\ x e. ( LSubSp ` W ) ) -> ( x i^i ( ( ocv ` W ) ` x ) ) = { ( 0g ` W ) } ) | 
						
							| 17 | 11 16 | syldan |  |-  ( ( W e. PreHil /\ x e. dom K ) -> ( x i^i ( ( ocv ` W ) ` x ) ) = { ( 0g ` W ) } ) | 
						
							| 18 | 2 3 4 5 7 11 15 17 | pj1lmhm |  |-  ( ( W e. PreHil /\ x e. dom K ) -> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) e. ( ( W |`s ( x ( LSSum ` W ) ( ( ocv ` W ) ` x ) ) ) LMHom W ) ) | 
						
							| 19 | 10 | simplbda |  |-  ( ( W e. PreHil /\ x e. dom K ) -> ( x ( LSSum ` W ) ( ( ocv ` W ) ` x ) ) = ( Base ` W ) ) | 
						
							| 20 | 19 | oveq2d |  |-  ( ( W e. PreHil /\ x e. dom K ) -> ( W |`s ( x ( LSSum ` W ) ( ( ocv ` W ) ` x ) ) ) = ( W |`s ( Base ` W ) ) ) | 
						
							| 21 | 8 | ressid |  |-  ( W e. PreHil -> ( W |`s ( Base ` W ) ) = W ) | 
						
							| 22 | 21 | adantr |  |-  ( ( W e. PreHil /\ x e. dom K ) -> ( W |`s ( Base ` W ) ) = W ) | 
						
							| 23 | 20 22 | eqtrd |  |-  ( ( W e. PreHil /\ x e. dom K ) -> ( W |`s ( x ( LSSum ` W ) ( ( ocv ` W ) ` x ) ) ) = W ) | 
						
							| 24 | 23 | oveq1d |  |-  ( ( W e. PreHil /\ x e. dom K ) -> ( ( W |`s ( x ( LSSum ` W ) ( ( ocv ` W ) ` x ) ) ) LMHom W ) = ( W LMHom W ) ) | 
						
							| 25 | 18 24 | eleqtrd |  |-  ( ( W e. PreHil /\ x e. dom K ) -> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) e. ( W LMHom W ) ) | 
						
							| 26 | 9 5 1 | pjfval2 |  |-  K = ( x e. dom K |-> ( x ( proj1 ` W ) ( ( ocv ` W ) ` x ) ) ) | 
						
							| 27 | 25 26 | fmptd |  |-  ( W e. PreHil -> K : dom K --> ( W LMHom W ) ) |