| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjf.k |  |-  K = ( proj ` W ) | 
						
							| 2 |  | pjf.v |  |-  V = ( Base ` W ) | 
						
							| 3 |  | eqid |  |-  ( LSubSp ` W ) = ( LSubSp ` W ) | 
						
							| 4 |  | eqid |  |-  ( ocv ` W ) = ( ocv ` W ) | 
						
							| 5 |  | eqid |  |-  ( proj1 ` W ) = ( proj1 ` W ) | 
						
							| 6 | 2 3 4 5 1 | pjdm |  |-  ( T e. dom K <-> ( T e. ( LSubSp ` W ) /\ ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) : V --> V ) ) | 
						
							| 7 | 6 | simprbi |  |-  ( T e. dom K -> ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) : V --> V ) | 
						
							| 8 | 4 5 1 | pjval |  |-  ( T e. dom K -> ( K ` T ) = ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) ) | 
						
							| 9 | 8 | feq1d |  |-  ( T e. dom K -> ( ( K ` T ) : V --> V <-> ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) : V --> V ) ) | 
						
							| 10 | 7 9 | mpbird |  |-  ( T e. dom K -> ( K ` T ) : V --> V ) |