Metamath Proof Explorer


Theorem pjf

Description: A projection is a function on the base set. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses pjf.k
|- K = ( proj ` W )
pjf.v
|- V = ( Base ` W )
Assertion pjf
|- ( T e. dom K -> ( K ` T ) : V --> V )

Proof

Step Hyp Ref Expression
1 pjf.k
 |-  K = ( proj ` W )
2 pjf.v
 |-  V = ( Base ` W )
3 eqid
 |-  ( LSubSp ` W ) = ( LSubSp ` W )
4 eqid
 |-  ( ocv ` W ) = ( ocv ` W )
5 eqid
 |-  ( proj1 ` W ) = ( proj1 ` W )
6 2 3 4 5 1 pjdm
 |-  ( T e. dom K <-> ( T e. ( LSubSp ` W ) /\ ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) : V --> V ) )
7 6 simprbi
 |-  ( T e. dom K -> ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) : V --> V )
8 4 5 1 pjval
 |-  ( T e. dom K -> ( K ` T ) = ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) )
9 8 feq1d
 |-  ( T e. dom K -> ( ( K ` T ) : V --> V <-> ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) : V --> V ) )
10 7 9 mpbird
 |-  ( T e. dom K -> ( K ` T ) : V --> V )