Step |
Hyp |
Ref |
Expression |
1 |
|
pjf.k |
|- K = ( proj ` W ) |
2 |
|
pjf.v |
|- V = ( Base ` W ) |
3 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
4 |
|
eqid |
|- ( ocv ` W ) = ( ocv ` W ) |
5 |
|
eqid |
|- ( proj1 ` W ) = ( proj1 ` W ) |
6 |
2 3 4 5 1
|
pjdm |
|- ( T e. dom K <-> ( T e. ( LSubSp ` W ) /\ ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) : V --> V ) ) |
7 |
6
|
simprbi |
|- ( T e. dom K -> ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) : V --> V ) |
8 |
4 5 1
|
pjval |
|- ( T e. dom K -> ( K ` T ) = ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) ) |
9 |
8
|
feq1d |
|- ( T e. dom K -> ( ( K ` T ) : V --> V <-> ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) : V --> V ) ) |
10 |
7 9
|
mpbird |
|- ( T e. dom K -> ( K ` T ) : V --> V ) |