| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjf.k |  |-  K = ( proj ` W ) | 
						
							| 2 |  | pjf.v |  |-  V = ( Base ` W ) | 
						
							| 3 |  | eqid |  |-  ( +g ` W ) = ( +g ` W ) | 
						
							| 4 |  | eqid |  |-  ( LSSum ` W ) = ( LSSum ` W ) | 
						
							| 5 |  | eqid |  |-  ( 0g ` W ) = ( 0g ` W ) | 
						
							| 6 |  | eqid |  |-  ( Cntz ` W ) = ( Cntz ` W ) | 
						
							| 7 |  | phllmod |  |-  ( W e. PreHil -> W e. LMod ) | 
						
							| 8 | 7 | adantr |  |-  ( ( W e. PreHil /\ T e. dom K ) -> W e. LMod ) | 
						
							| 9 |  | eqid |  |-  ( LSubSp ` W ) = ( LSubSp ` W ) | 
						
							| 10 | 9 | lsssssubg |  |-  ( W e. LMod -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) | 
						
							| 11 | 8 10 | syl |  |-  ( ( W e. PreHil /\ T e. dom K ) -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) | 
						
							| 12 |  | eqid |  |-  ( ocv ` W ) = ( ocv ` W ) | 
						
							| 13 | 2 9 12 4 1 | pjdm2 |  |-  ( W e. PreHil -> ( T e. dom K <-> ( T e. ( LSubSp ` W ) /\ ( T ( LSSum ` W ) ( ( ocv ` W ) ` T ) ) = V ) ) ) | 
						
							| 14 | 13 | simprbda |  |-  ( ( W e. PreHil /\ T e. dom K ) -> T e. ( LSubSp ` W ) ) | 
						
							| 15 | 11 14 | sseldd |  |-  ( ( W e. PreHil /\ T e. dom K ) -> T e. ( SubGrp ` W ) ) | 
						
							| 16 | 2 9 | lssss |  |-  ( T e. ( LSubSp ` W ) -> T C_ V ) | 
						
							| 17 | 14 16 | syl |  |-  ( ( W e. PreHil /\ T e. dom K ) -> T C_ V ) | 
						
							| 18 | 2 12 9 | ocvlss |  |-  ( ( W e. PreHil /\ T C_ V ) -> ( ( ocv ` W ) ` T ) e. ( LSubSp ` W ) ) | 
						
							| 19 | 17 18 | syldan |  |-  ( ( W e. PreHil /\ T e. dom K ) -> ( ( ocv ` W ) ` T ) e. ( LSubSp ` W ) ) | 
						
							| 20 | 11 19 | sseldd |  |-  ( ( W e. PreHil /\ T e. dom K ) -> ( ( ocv ` W ) ` T ) e. ( SubGrp ` W ) ) | 
						
							| 21 | 12 9 5 | ocvin |  |-  ( ( W e. PreHil /\ T e. ( LSubSp ` W ) ) -> ( T i^i ( ( ocv ` W ) ` T ) ) = { ( 0g ` W ) } ) | 
						
							| 22 | 14 21 | syldan |  |-  ( ( W e. PreHil /\ T e. dom K ) -> ( T i^i ( ( ocv ` W ) ` T ) ) = { ( 0g ` W ) } ) | 
						
							| 23 |  | lmodabl |  |-  ( W e. LMod -> W e. Abel ) | 
						
							| 24 | 8 23 | syl |  |-  ( ( W e. PreHil /\ T e. dom K ) -> W e. Abel ) | 
						
							| 25 | 6 24 15 20 | ablcntzd |  |-  ( ( W e. PreHil /\ T e. dom K ) -> T C_ ( ( Cntz ` W ) ` ( ( ocv ` W ) ` T ) ) ) | 
						
							| 26 |  | eqid |  |-  ( proj1 ` W ) = ( proj1 ` W ) | 
						
							| 27 | 3 4 5 6 15 20 22 25 26 | pj1f |  |-  ( ( W e. PreHil /\ T e. dom K ) -> ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) : ( T ( LSSum ` W ) ( ( ocv ` W ) ` T ) ) --> T ) | 
						
							| 28 | 12 26 1 | pjval |  |-  ( T e. dom K -> ( K ` T ) = ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) ) | 
						
							| 29 | 28 | adantl |  |-  ( ( W e. PreHil /\ T e. dom K ) -> ( K ` T ) = ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) ) | 
						
							| 30 | 29 | eqcomd |  |-  ( ( W e. PreHil /\ T e. dom K ) -> ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) = ( K ` T ) ) | 
						
							| 31 | 13 | simplbda |  |-  ( ( W e. PreHil /\ T e. dom K ) -> ( T ( LSSum ` W ) ( ( ocv ` W ) ` T ) ) = V ) | 
						
							| 32 | 30 31 | feq12d |  |-  ( ( W e. PreHil /\ T e. dom K ) -> ( ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) : ( T ( LSSum ` W ) ( ( ocv ` W ) ` T ) ) --> T <-> ( K ` T ) : V --> T ) ) | 
						
							| 33 | 27 32 | mpbid |  |-  ( ( W e. PreHil /\ T e. dom K ) -> ( K ` T ) : V --> T ) |