Step |
Hyp |
Ref |
Expression |
1 |
|
pjf.k |
|- K = ( proj ` W ) |
2 |
|
pjf.v |
|- V = ( Base ` W ) |
3 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
4 |
|
eqid |
|- ( LSSum ` W ) = ( LSSum ` W ) |
5 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
6 |
|
eqid |
|- ( Cntz ` W ) = ( Cntz ` W ) |
7 |
|
phllmod |
|- ( W e. PreHil -> W e. LMod ) |
8 |
7
|
adantr |
|- ( ( W e. PreHil /\ T e. dom K ) -> W e. LMod ) |
9 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
10 |
9
|
lsssssubg |
|- ( W e. LMod -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) |
11 |
8 10
|
syl |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) |
12 |
|
eqid |
|- ( ocv ` W ) = ( ocv ` W ) |
13 |
2 9 12 4 1
|
pjdm2 |
|- ( W e. PreHil -> ( T e. dom K <-> ( T e. ( LSubSp ` W ) /\ ( T ( LSSum ` W ) ( ( ocv ` W ) ` T ) ) = V ) ) ) |
14 |
13
|
simprbda |
|- ( ( W e. PreHil /\ T e. dom K ) -> T e. ( LSubSp ` W ) ) |
15 |
11 14
|
sseldd |
|- ( ( W e. PreHil /\ T e. dom K ) -> T e. ( SubGrp ` W ) ) |
16 |
2 9
|
lssss |
|- ( T e. ( LSubSp ` W ) -> T C_ V ) |
17 |
14 16
|
syl |
|- ( ( W e. PreHil /\ T e. dom K ) -> T C_ V ) |
18 |
2 12 9
|
ocvlss |
|- ( ( W e. PreHil /\ T C_ V ) -> ( ( ocv ` W ) ` T ) e. ( LSubSp ` W ) ) |
19 |
17 18
|
syldan |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( ( ocv ` W ) ` T ) e. ( LSubSp ` W ) ) |
20 |
11 19
|
sseldd |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( ( ocv ` W ) ` T ) e. ( SubGrp ` W ) ) |
21 |
12 9 5
|
ocvin |
|- ( ( W e. PreHil /\ T e. ( LSubSp ` W ) ) -> ( T i^i ( ( ocv ` W ) ` T ) ) = { ( 0g ` W ) } ) |
22 |
14 21
|
syldan |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( T i^i ( ( ocv ` W ) ` T ) ) = { ( 0g ` W ) } ) |
23 |
|
lmodabl |
|- ( W e. LMod -> W e. Abel ) |
24 |
8 23
|
syl |
|- ( ( W e. PreHil /\ T e. dom K ) -> W e. Abel ) |
25 |
6 24 15 20
|
ablcntzd |
|- ( ( W e. PreHil /\ T e. dom K ) -> T C_ ( ( Cntz ` W ) ` ( ( ocv ` W ) ` T ) ) ) |
26 |
|
eqid |
|- ( proj1 ` W ) = ( proj1 ` W ) |
27 |
3 4 5 6 15 20 22 25 26
|
pj1f |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) : ( T ( LSSum ` W ) ( ( ocv ` W ) ` T ) ) --> T ) |
28 |
12 26 1
|
pjval |
|- ( T e. dom K -> ( K ` T ) = ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) ) |
29 |
28
|
adantl |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( K ` T ) = ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) ) |
30 |
29
|
eqcomd |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) = ( K ` T ) ) |
31 |
13
|
simplbda |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( T ( LSSum ` W ) ( ( ocv ` W ) ` T ) ) = V ) |
32 |
30 31
|
feq12d |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) : ( T ( LSSum ` W ) ( ( ocv ` W ) ` T ) ) --> T <-> ( K ` T ) : V --> T ) ) |
33 |
27 32
|
mpbid |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( K ` T ) : V --> T ) |