Step |
Hyp |
Ref |
Expression |
1 |
|
pjf.k |
|- K = ( proj ` W ) |
2 |
|
pjf.v |
|- V = ( Base ` W ) |
3 |
1 2
|
pjf2 |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( K ` T ) : V --> T ) |
4 |
3
|
frnd |
|- ( ( W e. PreHil /\ T e. dom K ) -> ran ( K ` T ) C_ T ) |
5 |
|
eqid |
|- ( ocv ` W ) = ( ocv ` W ) |
6 |
|
eqid |
|- ( proj1 ` W ) = ( proj1 ` W ) |
7 |
5 6 1
|
pjval |
|- ( T e. dom K -> ( K ` T ) = ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) ) |
8 |
7
|
ad2antlr |
|- ( ( ( W e. PreHil /\ T e. dom K ) /\ x e. T ) -> ( K ` T ) = ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) ) |
9 |
8
|
fveq1d |
|- ( ( ( W e. PreHil /\ T e. dom K ) /\ x e. T ) -> ( ( K ` T ) ` x ) = ( ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) ` x ) ) |
10 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
11 |
|
eqid |
|- ( LSSum ` W ) = ( LSSum ` W ) |
12 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
13 |
|
eqid |
|- ( Cntz ` W ) = ( Cntz ` W ) |
14 |
|
phllmod |
|- ( W e. PreHil -> W e. LMod ) |
15 |
14
|
adantr |
|- ( ( W e. PreHil /\ T e. dom K ) -> W e. LMod ) |
16 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
17 |
16
|
lsssssubg |
|- ( W e. LMod -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) |
18 |
15 17
|
syl |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) |
19 |
2 16 5 11 1
|
pjdm2 |
|- ( W e. PreHil -> ( T e. dom K <-> ( T e. ( LSubSp ` W ) /\ ( T ( LSSum ` W ) ( ( ocv ` W ) ` T ) ) = V ) ) ) |
20 |
19
|
simprbda |
|- ( ( W e. PreHil /\ T e. dom K ) -> T e. ( LSubSp ` W ) ) |
21 |
18 20
|
sseldd |
|- ( ( W e. PreHil /\ T e. dom K ) -> T e. ( SubGrp ` W ) ) |
22 |
2 16
|
lssss |
|- ( T e. ( LSubSp ` W ) -> T C_ V ) |
23 |
20 22
|
syl |
|- ( ( W e. PreHil /\ T e. dom K ) -> T C_ V ) |
24 |
2 5 16
|
ocvlss |
|- ( ( W e. PreHil /\ T C_ V ) -> ( ( ocv ` W ) ` T ) e. ( LSubSp ` W ) ) |
25 |
23 24
|
syldan |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( ( ocv ` W ) ` T ) e. ( LSubSp ` W ) ) |
26 |
18 25
|
sseldd |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( ( ocv ` W ) ` T ) e. ( SubGrp ` W ) ) |
27 |
5 16 12
|
ocvin |
|- ( ( W e. PreHil /\ T e. ( LSubSp ` W ) ) -> ( T i^i ( ( ocv ` W ) ` T ) ) = { ( 0g ` W ) } ) |
28 |
20 27
|
syldan |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( T i^i ( ( ocv ` W ) ` T ) ) = { ( 0g ` W ) } ) |
29 |
|
lmodabl |
|- ( W e. LMod -> W e. Abel ) |
30 |
15 29
|
syl |
|- ( ( W e. PreHil /\ T e. dom K ) -> W e. Abel ) |
31 |
13 30 21 26
|
ablcntzd |
|- ( ( W e. PreHil /\ T e. dom K ) -> T C_ ( ( Cntz ` W ) ` ( ( ocv ` W ) ` T ) ) ) |
32 |
10 11 12 13 21 26 28 31 6
|
pj1lid |
|- ( ( ( W e. PreHil /\ T e. dom K ) /\ x e. T ) -> ( ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) ` x ) = x ) |
33 |
9 32
|
eqtrd |
|- ( ( ( W e. PreHil /\ T e. dom K ) /\ x e. T ) -> ( ( K ` T ) ` x ) = x ) |
34 |
3
|
ffnd |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( K ` T ) Fn V ) |
35 |
23
|
sselda |
|- ( ( ( W e. PreHil /\ T e. dom K ) /\ x e. T ) -> x e. V ) |
36 |
|
fnfvelrn |
|- ( ( ( K ` T ) Fn V /\ x e. V ) -> ( ( K ` T ) ` x ) e. ran ( K ` T ) ) |
37 |
34 35 36
|
syl2an2r |
|- ( ( ( W e. PreHil /\ T e. dom K ) /\ x e. T ) -> ( ( K ` T ) ` x ) e. ran ( K ` T ) ) |
38 |
33 37
|
eqeltrrd |
|- ( ( ( W e. PreHil /\ T e. dom K ) /\ x e. T ) -> x e. ran ( K ` T ) ) |
39 |
4 38
|
eqelssd |
|- ( ( W e. PreHil /\ T e. dom K ) -> ran ( K ` T ) = T ) |
40 |
|
dffo2 |
|- ( ( K ` T ) : V -onto-> T <-> ( ( K ` T ) : V --> T /\ ran ( K ` T ) = T ) ) |
41 |
3 39 40
|
sylanbrc |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( K ` T ) : V -onto-> T ) |