| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjf.k |
|- K = ( proj ` W ) |
| 2 |
|
pjf.v |
|- V = ( Base ` W ) |
| 3 |
1 2
|
pjf2 |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( K ` T ) : V --> T ) |
| 4 |
3
|
frnd |
|- ( ( W e. PreHil /\ T e. dom K ) -> ran ( K ` T ) C_ T ) |
| 5 |
|
eqid |
|- ( ocv ` W ) = ( ocv ` W ) |
| 6 |
|
eqid |
|- ( proj1 ` W ) = ( proj1 ` W ) |
| 7 |
5 6 1
|
pjval |
|- ( T e. dom K -> ( K ` T ) = ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) ) |
| 8 |
7
|
ad2antlr |
|- ( ( ( W e. PreHil /\ T e. dom K ) /\ x e. T ) -> ( K ` T ) = ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) ) |
| 9 |
8
|
fveq1d |
|- ( ( ( W e. PreHil /\ T e. dom K ) /\ x e. T ) -> ( ( K ` T ) ` x ) = ( ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) ` x ) ) |
| 10 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
| 11 |
|
eqid |
|- ( LSSum ` W ) = ( LSSum ` W ) |
| 12 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
| 13 |
|
eqid |
|- ( Cntz ` W ) = ( Cntz ` W ) |
| 14 |
|
phllmod |
|- ( W e. PreHil -> W e. LMod ) |
| 15 |
14
|
adantr |
|- ( ( W e. PreHil /\ T e. dom K ) -> W e. LMod ) |
| 16 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
| 17 |
16
|
lsssssubg |
|- ( W e. LMod -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) |
| 18 |
15 17
|
syl |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) |
| 19 |
2 16 5 11 1
|
pjdm2 |
|- ( W e. PreHil -> ( T e. dom K <-> ( T e. ( LSubSp ` W ) /\ ( T ( LSSum ` W ) ( ( ocv ` W ) ` T ) ) = V ) ) ) |
| 20 |
19
|
simprbda |
|- ( ( W e. PreHil /\ T e. dom K ) -> T e. ( LSubSp ` W ) ) |
| 21 |
18 20
|
sseldd |
|- ( ( W e. PreHil /\ T e. dom K ) -> T e. ( SubGrp ` W ) ) |
| 22 |
2 16
|
lssss |
|- ( T e. ( LSubSp ` W ) -> T C_ V ) |
| 23 |
20 22
|
syl |
|- ( ( W e. PreHil /\ T e. dom K ) -> T C_ V ) |
| 24 |
2 5 16
|
ocvlss |
|- ( ( W e. PreHil /\ T C_ V ) -> ( ( ocv ` W ) ` T ) e. ( LSubSp ` W ) ) |
| 25 |
23 24
|
syldan |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( ( ocv ` W ) ` T ) e. ( LSubSp ` W ) ) |
| 26 |
18 25
|
sseldd |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( ( ocv ` W ) ` T ) e. ( SubGrp ` W ) ) |
| 27 |
5 16 12
|
ocvin |
|- ( ( W e. PreHil /\ T e. ( LSubSp ` W ) ) -> ( T i^i ( ( ocv ` W ) ` T ) ) = { ( 0g ` W ) } ) |
| 28 |
20 27
|
syldan |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( T i^i ( ( ocv ` W ) ` T ) ) = { ( 0g ` W ) } ) |
| 29 |
|
lmodabl |
|- ( W e. LMod -> W e. Abel ) |
| 30 |
15 29
|
syl |
|- ( ( W e. PreHil /\ T e. dom K ) -> W e. Abel ) |
| 31 |
13 30 21 26
|
ablcntzd |
|- ( ( W e. PreHil /\ T e. dom K ) -> T C_ ( ( Cntz ` W ) ` ( ( ocv ` W ) ` T ) ) ) |
| 32 |
10 11 12 13 21 26 28 31 6
|
pj1lid |
|- ( ( ( W e. PreHil /\ T e. dom K ) /\ x e. T ) -> ( ( T ( proj1 ` W ) ( ( ocv ` W ) ` T ) ) ` x ) = x ) |
| 33 |
9 32
|
eqtrd |
|- ( ( ( W e. PreHil /\ T e. dom K ) /\ x e. T ) -> ( ( K ` T ) ` x ) = x ) |
| 34 |
3
|
ffnd |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( K ` T ) Fn V ) |
| 35 |
23
|
sselda |
|- ( ( ( W e. PreHil /\ T e. dom K ) /\ x e. T ) -> x e. V ) |
| 36 |
|
fnfvelrn |
|- ( ( ( K ` T ) Fn V /\ x e. V ) -> ( ( K ` T ) ` x ) e. ran ( K ` T ) ) |
| 37 |
34 35 36
|
syl2an2r |
|- ( ( ( W e. PreHil /\ T e. dom K ) /\ x e. T ) -> ( ( K ` T ) ` x ) e. ran ( K ` T ) ) |
| 38 |
33 37
|
eqeltrrd |
|- ( ( ( W e. PreHil /\ T e. dom K ) /\ x e. T ) -> x e. ran ( K ` T ) ) |
| 39 |
4 38
|
eqelssd |
|- ( ( W e. PreHil /\ T e. dom K ) -> ran ( K ` T ) = T ) |
| 40 |
|
dffo2 |
|- ( ( K ` T ) : V -onto-> T <-> ( ( K ` T ) : V --> T /\ ran ( K ` T ) = T ) ) |
| 41 |
3 39 40
|
sylanbrc |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( K ` T ) : V -onto-> T ) |