Step |
Hyp |
Ref |
Expression |
1 |
|
pjf.k |
⊢ 𝐾 = ( proj ‘ 𝑊 ) |
2 |
|
pjf.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
3 |
1 2
|
pjf2 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( 𝐾 ‘ 𝑇 ) : 𝑉 ⟶ 𝑇 ) |
4 |
3
|
frnd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ran ( 𝐾 ‘ 𝑇 ) ⊆ 𝑇 ) |
5 |
|
eqid |
⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( proj1 ‘ 𝑊 ) = ( proj1 ‘ 𝑊 ) |
7 |
5 6 1
|
pjval |
⊢ ( 𝑇 ∈ dom 𝐾 → ( 𝐾 ‘ 𝑇 ) = ( 𝑇 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) ) |
8 |
7
|
ad2antlr |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) ∧ 𝑥 ∈ 𝑇 ) → ( 𝐾 ‘ 𝑇 ) = ( 𝑇 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) ) |
9 |
8
|
fveq1d |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) ∧ 𝑥 ∈ 𝑇 ) → ( ( 𝐾 ‘ 𝑇 ) ‘ 𝑥 ) = ( ( 𝑇 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) ‘ 𝑥 ) ) |
10 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
11 |
|
eqid |
⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) |
12 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
13 |
|
eqid |
⊢ ( Cntz ‘ 𝑊 ) = ( Cntz ‘ 𝑊 ) |
14 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
15 |
14
|
adantr |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → 𝑊 ∈ LMod ) |
16 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
17 |
16
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → ( LSubSp ‘ 𝑊 ) ⊆ ( SubGrp ‘ 𝑊 ) ) |
18 |
15 17
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( LSubSp ‘ 𝑊 ) ⊆ ( SubGrp ‘ 𝑊 ) ) |
19 |
2 16 5 11 1
|
pjdm2 |
⊢ ( 𝑊 ∈ PreHil → ( 𝑇 ∈ dom 𝐾 ↔ ( 𝑇 ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) = 𝑉 ) ) ) |
20 |
19
|
simprbda |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → 𝑇 ∈ ( LSubSp ‘ 𝑊 ) ) |
21 |
18 20
|
sseldd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
22 |
2 16
|
lssss |
⊢ ( 𝑇 ∈ ( LSubSp ‘ 𝑊 ) → 𝑇 ⊆ 𝑉 ) |
23 |
20 22
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → 𝑇 ⊆ 𝑉 ) |
24 |
2 5 16
|
ocvlss |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ⊆ 𝑉 ) → ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
25 |
23 24
|
syldan |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
26 |
18 25
|
sseldd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ∈ ( SubGrp ‘ 𝑊 ) ) |
27 |
5 16 12
|
ocvin |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ ( LSubSp ‘ 𝑊 ) ) → ( 𝑇 ∩ ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) = { ( 0g ‘ 𝑊 ) } ) |
28 |
20 27
|
syldan |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( 𝑇 ∩ ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) = { ( 0g ‘ 𝑊 ) } ) |
29 |
|
lmodabl |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) |
30 |
15 29
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → 𝑊 ∈ Abel ) |
31 |
13 30 21 26
|
ablcntzd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → 𝑇 ⊆ ( ( Cntz ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) ) |
32 |
10 11 12 13 21 26 28 31 6
|
pj1lid |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) ∧ 𝑥 ∈ 𝑇 ) → ( ( 𝑇 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) ‘ 𝑥 ) = 𝑥 ) |
33 |
9 32
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) ∧ 𝑥 ∈ 𝑇 ) → ( ( 𝐾 ‘ 𝑇 ) ‘ 𝑥 ) = 𝑥 ) |
34 |
3
|
ffnd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( 𝐾 ‘ 𝑇 ) Fn 𝑉 ) |
35 |
23
|
sselda |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ 𝑉 ) |
36 |
|
fnfvelrn |
⊢ ( ( ( 𝐾 ‘ 𝑇 ) Fn 𝑉 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐾 ‘ 𝑇 ) ‘ 𝑥 ) ∈ ran ( 𝐾 ‘ 𝑇 ) ) |
37 |
34 35 36
|
syl2an2r |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) ∧ 𝑥 ∈ 𝑇 ) → ( ( 𝐾 ‘ 𝑇 ) ‘ 𝑥 ) ∈ ran ( 𝐾 ‘ 𝑇 ) ) |
38 |
33 37
|
eqeltrrd |
⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ ran ( 𝐾 ‘ 𝑇 ) ) |
39 |
4 38
|
eqelssd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ran ( 𝐾 ‘ 𝑇 ) = 𝑇 ) |
40 |
|
dffo2 |
⊢ ( ( 𝐾 ‘ 𝑇 ) : 𝑉 –onto→ 𝑇 ↔ ( ( 𝐾 ‘ 𝑇 ) : 𝑉 ⟶ 𝑇 ∧ ran ( 𝐾 ‘ 𝑇 ) = 𝑇 ) ) |
41 |
3 39 40
|
sylanbrc |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( 𝐾 ‘ 𝑇 ) : 𝑉 –onto→ 𝑇 ) |