Step |
Hyp |
Ref |
Expression |
1 |
|
pjf.k |
|
2 |
|
pjf.v |
|
3 |
1 2
|
pjf2 |
|
4 |
3
|
frnd |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
5 6 1
|
pjval |
|
8 |
7
|
ad2antlr |
|
9 |
8
|
fveq1d |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
phllmod |
|
15 |
14
|
adantr |
|
16 |
|
eqid |
|
17 |
16
|
lsssssubg |
|
18 |
15 17
|
syl |
|
19 |
2 16 5 11 1
|
pjdm2 |
|
20 |
19
|
simprbda |
|
21 |
18 20
|
sseldd |
|
22 |
2 16
|
lssss |
|
23 |
20 22
|
syl |
|
24 |
2 5 16
|
ocvlss |
|
25 |
23 24
|
syldan |
|
26 |
18 25
|
sseldd |
|
27 |
5 16 12
|
ocvin |
|
28 |
20 27
|
syldan |
|
29 |
|
lmodabl |
|
30 |
15 29
|
syl |
|
31 |
13 30 21 26
|
ablcntzd |
|
32 |
10 11 12 13 21 26 28 31 6
|
pj1lid |
|
33 |
9 32
|
eqtrd |
|
34 |
3
|
ffnd |
|
35 |
23
|
sselda |
|
36 |
|
fnfvelrn |
|
37 |
34 35 36
|
syl2an2r |
|
38 |
33 37
|
eqeltrrd |
|
39 |
4 38
|
eqelssd |
|
40 |
|
dffo2 |
|
41 |
3 39 40
|
sylanbrc |
|