Metamath Proof Explorer


Theorem pjfo

Description: A projection is a surjection onto the subspace. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses pjf.k K = proj W
pjf.v V = Base W
Assertion pjfo W PreHil T dom K K T : V onto T

Proof

Step Hyp Ref Expression
1 pjf.k K = proj W
2 pjf.v V = Base W
3 1 2 pjf2 W PreHil T dom K K T : V T
4 3 frnd W PreHil T dom K ran K T T
5 eqid ocv W = ocv W
6 eqid proj 1 W = proj 1 W
7 5 6 1 pjval T dom K K T = T proj 1 W ocv W T
8 7 ad2antlr W PreHil T dom K x T K T = T proj 1 W ocv W T
9 8 fveq1d W PreHil T dom K x T K T x = T proj 1 W ocv W T x
10 eqid + W = + W
11 eqid LSSum W = LSSum W
12 eqid 0 W = 0 W
13 eqid Cntz W = Cntz W
14 phllmod W PreHil W LMod
15 14 adantr W PreHil T dom K W LMod
16 eqid LSubSp W = LSubSp W
17 16 lsssssubg W LMod LSubSp W SubGrp W
18 15 17 syl W PreHil T dom K LSubSp W SubGrp W
19 2 16 5 11 1 pjdm2 W PreHil T dom K T LSubSp W T LSSum W ocv W T = V
20 19 simprbda W PreHil T dom K T LSubSp W
21 18 20 sseldd W PreHil T dom K T SubGrp W
22 2 16 lssss T LSubSp W T V
23 20 22 syl W PreHil T dom K T V
24 2 5 16 ocvlss W PreHil T V ocv W T LSubSp W
25 23 24 syldan W PreHil T dom K ocv W T LSubSp W
26 18 25 sseldd W PreHil T dom K ocv W T SubGrp W
27 5 16 12 ocvin W PreHil T LSubSp W T ocv W T = 0 W
28 20 27 syldan W PreHil T dom K T ocv W T = 0 W
29 lmodabl W LMod W Abel
30 15 29 syl W PreHil T dom K W Abel
31 13 30 21 26 ablcntzd W PreHil T dom K T Cntz W ocv W T
32 10 11 12 13 21 26 28 31 6 pj1lid W PreHil T dom K x T T proj 1 W ocv W T x = x
33 9 32 eqtrd W PreHil T dom K x T K T x = x
34 3 ffnd W PreHil T dom K K T Fn V
35 23 sselda W PreHil T dom K x T x V
36 fnfvelrn K T Fn V x V K T x ran K T
37 34 35 36 syl2an2r W PreHil T dom K x T K T x ran K T
38 33 37 eqeltrrd W PreHil T dom K x T x ran K T
39 4 38 eqelssd W PreHil T dom K ran K T = T
40 dffo2 K T : V onto T K T : V T ran K T = T
41 3 39 40 sylanbrc W PreHil T dom K K T : V onto T