Metamath Proof Explorer


Definition df-pj

Description: Define orthogonal projection onto a subspace. This is just a wrapping of df-pj1 , but we restrict the domain of this function to only total projection functions. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Assertion df-pj proj=hVxLSubSphxproj1hocvhxV×BasehBaseh

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpj classproj
1 vh setvarh
2 cvv classV
3 vx setvarx
4 clss classLSubSp
5 1 cv setvarh
6 5 4 cfv classLSubSph
7 3 cv setvarx
8 cpj1 classproj1
9 5 8 cfv classproj1h
10 cocv classocv
11 5 10 cfv classocvh
12 7 11 cfv classocvhx
13 7 12 9 co classxproj1hocvhx
14 3 6 13 cmpt classxLSubSphxproj1hocvhx
15 cbs classBase
16 5 15 cfv classBaseh
17 cmap class𝑚
18 16 16 17 co classBasehBaseh
19 2 18 cxp classV×BasehBaseh
20 14 19 cin classxLSubSphxproj1hocvhxV×BasehBaseh
21 1 2 20 cmpt classhVxLSubSphxproj1hocvhxV×BasehBaseh
22 0 21 wceq wffproj=hVxLSubSphxproj1hocvhxV×BasehBaseh