Metamath Proof Explorer


Definition df-pj

Description: Define orthogonal projection onto a subspace. This is just a wrapping of df-pj1 , but we restrict the domain of this function to only total projection functions. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Assertion df-pj proj = h V x LSubSp h x proj 1 h ocv h x V × Base h Base h

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpj class proj
1 vh setvar h
2 cvv class V
3 vx setvar x
4 clss class LSubSp
5 1 cv setvar h
6 5 4 cfv class LSubSp h
7 3 cv setvar x
8 cpj1 class proj 1
9 5 8 cfv class proj 1 h
10 cocv class ocv
11 5 10 cfv class ocv h
12 7 11 cfv class ocv h x
13 7 12 9 co class x proj 1 h ocv h x
14 3 6 13 cmpt class x LSubSp h x proj 1 h ocv h x
15 cbs class Base
16 5 15 cfv class Base h
17 cmap class 𝑚
18 16 16 17 co class Base h Base h
19 2 18 cxp class V × Base h Base h
20 14 19 cin class x LSubSp h x proj 1 h ocv h x V × Base h Base h
21 1 2 20 cmpt class h V x LSubSp h x proj 1 h ocv h x V × Base h Base h
22 0 21 wceq wff proj = h V x LSubSp h x proj 1 h ocv h x V × Base h Base h