Metamath Proof Explorer


Definition df-pj

Description: Define orthogonal projection onto a subspace. This is just a wrapping of df-pj1 , but we restrict the domain of this function to only total projection functions. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Assertion df-pj proj = ( ∈ V ↦ ( ( 𝑥 ∈ ( LSubSp ‘ ) ↦ ( 𝑥 ( proj1 ) ( ( ocv ‘ ) ‘ 𝑥 ) ) ) ∩ ( V × ( ( Base ‘ ) ↑m ( Base ‘ ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpj proj
1 vh
2 cvv V
3 vx 𝑥
4 clss LSubSp
5 1 cv
6 5 4 cfv ( LSubSp ‘ )
7 3 cv 𝑥
8 cpj1 proj1
9 5 8 cfv ( proj1 )
10 cocv ocv
11 5 10 cfv ( ocv ‘ )
12 7 11 cfv ( ( ocv ‘ ) ‘ 𝑥 )
13 7 12 9 co ( 𝑥 ( proj1 ) ( ( ocv ‘ ) ‘ 𝑥 ) )
14 3 6 13 cmpt ( 𝑥 ∈ ( LSubSp ‘ ) ↦ ( 𝑥 ( proj1 ) ( ( ocv ‘ ) ‘ 𝑥 ) ) )
15 cbs Base
16 5 15 cfv ( Base ‘ )
17 cmap m
18 16 16 17 co ( ( Base ‘ ) ↑m ( Base ‘ ) )
19 2 18 cxp ( V × ( ( Base ‘ ) ↑m ( Base ‘ ) ) )
20 14 19 cin ( ( 𝑥 ∈ ( LSubSp ‘ ) ↦ ( 𝑥 ( proj1 ) ( ( ocv ‘ ) ‘ 𝑥 ) ) ) ∩ ( V × ( ( Base ‘ ) ↑m ( Base ‘ ) ) ) )
21 1 2 20 cmpt ( ∈ V ↦ ( ( 𝑥 ∈ ( LSubSp ‘ ) ↦ ( 𝑥 ( proj1 ) ( ( ocv ‘ ) ‘ 𝑥 ) ) ) ∩ ( V × ( ( Base ‘ ) ↑m ( Base ‘ ) ) ) ) )
22 0 21 wceq proj = ( ∈ V ↦ ( ( 𝑥 ∈ ( LSubSp ‘ ) ↦ ( 𝑥 ( proj1 ) ( ( ocv ‘ ) ‘ 𝑥 ) ) ) ∩ ( V × ( ( Base ‘ ) ↑m ( Base ‘ ) ) ) ) )