| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cpj | ⊢ proj | 
						
							| 1 |  | vh | ⊢ ℎ | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vx | ⊢ 𝑥 | 
						
							| 4 |  | clss | ⊢ LSubSp | 
						
							| 5 | 1 | cv | ⊢ ℎ | 
						
							| 6 | 5 4 | cfv | ⊢ ( LSubSp ‘ ℎ ) | 
						
							| 7 | 3 | cv | ⊢ 𝑥 | 
						
							| 8 |  | cpj1 | ⊢ proj1 | 
						
							| 9 | 5 8 | cfv | ⊢ ( proj1 ‘ ℎ ) | 
						
							| 10 |  | cocv | ⊢ ocv | 
						
							| 11 | 5 10 | cfv | ⊢ ( ocv ‘ ℎ ) | 
						
							| 12 | 7 11 | cfv | ⊢ ( ( ocv ‘ ℎ ) ‘ 𝑥 ) | 
						
							| 13 | 7 12 9 | co | ⊢ ( 𝑥 ( proj1 ‘ ℎ ) ( ( ocv ‘ ℎ ) ‘ 𝑥 ) ) | 
						
							| 14 | 3 6 13 | cmpt | ⊢ ( 𝑥  ∈  ( LSubSp ‘ ℎ )  ↦  ( 𝑥 ( proj1 ‘ ℎ ) ( ( ocv ‘ ℎ ) ‘ 𝑥 ) ) ) | 
						
							| 15 |  | cbs | ⊢ Base | 
						
							| 16 | 5 15 | cfv | ⊢ ( Base ‘ ℎ ) | 
						
							| 17 |  | cmap | ⊢  ↑m | 
						
							| 18 | 16 16 17 | co | ⊢ ( ( Base ‘ ℎ )  ↑m  ( Base ‘ ℎ ) ) | 
						
							| 19 | 2 18 | cxp | ⊢ ( V  ×  ( ( Base ‘ ℎ )  ↑m  ( Base ‘ ℎ ) ) ) | 
						
							| 20 | 14 19 | cin | ⊢ ( ( 𝑥  ∈  ( LSubSp ‘ ℎ )  ↦  ( 𝑥 ( proj1 ‘ ℎ ) ( ( ocv ‘ ℎ ) ‘ 𝑥 ) ) )  ∩  ( V  ×  ( ( Base ‘ ℎ )  ↑m  ( Base ‘ ℎ ) ) ) ) | 
						
							| 21 | 1 2 20 | cmpt | ⊢ ( ℎ  ∈  V  ↦  ( ( 𝑥  ∈  ( LSubSp ‘ ℎ )  ↦  ( 𝑥 ( proj1 ‘ ℎ ) ( ( ocv ‘ ℎ ) ‘ 𝑥 ) ) )  ∩  ( V  ×  ( ( Base ‘ ℎ )  ↑m  ( Base ‘ ℎ ) ) ) ) ) | 
						
							| 22 | 0 21 | wceq | ⊢ proj  =  ( ℎ  ∈  V  ↦  ( ( 𝑥  ∈  ( LSubSp ‘ ℎ )  ↦  ( 𝑥 ( proj1 ‘ ℎ ) ( ( ocv ‘ ℎ ) ‘ 𝑥 ) ) )  ∩  ( V  ×  ( ( Base ‘ ℎ )  ↑m  ( Base ‘ ℎ ) ) ) ) ) |