Step |
Hyp |
Ref |
Expression |
0 |
|
cpj |
⊢ proj |
1 |
|
vh |
⊢ ℎ |
2 |
|
cvv |
⊢ V |
3 |
|
vx |
⊢ 𝑥 |
4 |
|
clss |
⊢ LSubSp |
5 |
1
|
cv |
⊢ ℎ |
6 |
5 4
|
cfv |
⊢ ( LSubSp ‘ ℎ ) |
7 |
3
|
cv |
⊢ 𝑥 |
8 |
|
cpj1 |
⊢ proj1 |
9 |
5 8
|
cfv |
⊢ ( proj1 ‘ ℎ ) |
10 |
|
cocv |
⊢ ocv |
11 |
5 10
|
cfv |
⊢ ( ocv ‘ ℎ ) |
12 |
7 11
|
cfv |
⊢ ( ( ocv ‘ ℎ ) ‘ 𝑥 ) |
13 |
7 12 9
|
co |
⊢ ( 𝑥 ( proj1 ‘ ℎ ) ( ( ocv ‘ ℎ ) ‘ 𝑥 ) ) |
14 |
3 6 13
|
cmpt |
⊢ ( 𝑥 ∈ ( LSubSp ‘ ℎ ) ↦ ( 𝑥 ( proj1 ‘ ℎ ) ( ( ocv ‘ ℎ ) ‘ 𝑥 ) ) ) |
15 |
|
cbs |
⊢ Base |
16 |
5 15
|
cfv |
⊢ ( Base ‘ ℎ ) |
17 |
|
cmap |
⊢ ↑m |
18 |
16 16 17
|
co |
⊢ ( ( Base ‘ ℎ ) ↑m ( Base ‘ ℎ ) ) |
19 |
2 18
|
cxp |
⊢ ( V × ( ( Base ‘ ℎ ) ↑m ( Base ‘ ℎ ) ) ) |
20 |
14 19
|
cin |
⊢ ( ( 𝑥 ∈ ( LSubSp ‘ ℎ ) ↦ ( 𝑥 ( proj1 ‘ ℎ ) ( ( ocv ‘ ℎ ) ‘ 𝑥 ) ) ) ∩ ( V × ( ( Base ‘ ℎ ) ↑m ( Base ‘ ℎ ) ) ) ) |
21 |
1 2 20
|
cmpt |
⊢ ( ℎ ∈ V ↦ ( ( 𝑥 ∈ ( LSubSp ‘ ℎ ) ↦ ( 𝑥 ( proj1 ‘ ℎ ) ( ( ocv ‘ ℎ ) ‘ 𝑥 ) ) ) ∩ ( V × ( ( Base ‘ ℎ ) ↑m ( Base ‘ ℎ ) ) ) ) ) |
22 |
0 21
|
wceq |
⊢ proj = ( ℎ ∈ V ↦ ( ( 𝑥 ∈ ( LSubSp ‘ ℎ ) ↦ ( 𝑥 ( proj1 ‘ ℎ ) ( ( ocv ‘ ℎ ) ‘ 𝑥 ) ) ) ∩ ( V × ( ( Base ‘ ℎ ) ↑m ( Base ‘ ℎ ) ) ) ) ) |