Metamath Proof Explorer


Definition df-hil

Description: Define class of all Hilbert spaces. Based on Proposition 4.5, p. 176, Gudrun Kalmbach, Quantum Measures and Spaces, Kluwer, Dordrecht, 1998. (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 16-Oct-2015)

Ref Expression
Assertion df-hil Hil = { ∈ PreHil ∣ dom ( proj ‘ ) = ( ClSubSp ‘ ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 chil Hil
1 vh
2 cphl PreHil
3 cpj proj
4 1 cv
5 4 3 cfv ( proj ‘ )
6 5 cdm dom ( proj ‘ )
7 ccss ClSubSp
8 4 7 cfv ( ClSubSp ‘ )
9 6 8 wceq dom ( proj ‘ ) = ( ClSubSp ‘ )
10 9 1 2 crab { ∈ PreHil ∣ dom ( proj ‘ ) = ( ClSubSp ‘ ) }
11 0 10 wceq Hil = { ∈ PreHil ∣ dom ( proj ‘ ) = ( ClSubSp ‘ ) }