Database
BASIC ALGEBRAIC STRUCTURES
Generalized pre-Hilbert and Hilbert spaces
Orthogonal projection and orthonormal bases
df-hil
Metamath Proof Explorer
Description: Define class of all Hilbert spaces. Based on Proposition 4.5, p. 176,
Gudrun Kalmbach, Quantum Measures and Spaces, Kluwer, Dordrecht, 1998.
(Contributed by NM , 7-Oct-2011) (Revised by Mario Carneiro , 16-Oct-2015)
Ref
Expression
Assertion
df-hil
⊢ Hil = h ∈ PreHil | dom ⁡ proj ⁡ h = ClSubSp ⁡ h
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
chil
class Hil
1
vh
setvar h
2
cphl
class PreHil
3
cpj
class proj
4
1
cv
setvar h
5
4 3
cfv
class proj ⁡ h
6
5
cdm
class dom ⁡ proj ⁡ h
7
ccss
class ClSubSp
8
4 7
cfv
class ClSubSp ⁡ h
9
6 8
wceq
wff dom ⁡ proj ⁡ h = ClSubSp ⁡ h
10
9 1 2
crab
class h ∈ PreHil | dom ⁡ proj ⁡ h = ClSubSp ⁡ h
11
0 10
wceq
wff Hil = h ∈ PreHil | dom ⁡ proj ⁡ h = ClSubSp ⁡ h