Metamath Proof Explorer


Definition df-hil

Description: Define class of all Hilbert spaces. Based on Proposition 4.5, p. 176, Gudrun Kalmbach, Quantum Measures and Spaces, Kluwer, Dordrecht, 1998. (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 16-Oct-2015)

Ref Expression
Assertion df-hil Hil=hPreHil|domprojh=ClSubSph

Detailed syntax breakdown

Step Hyp Ref Expression
0 chil classHil
1 vh setvarh
2 cphl classPreHil
3 cpj classproj
4 1 cv setvarh
5 4 3 cfv classprojh
6 5 cdm classdomprojh
7 ccss classClSubSp
8 4 7 cfv classClSubSph
9 6 8 wceq wffdomprojh=ClSubSph
10 9 1 2 crab classhPreHil|domprojh=ClSubSph
11 0 10 wceq wffHil=hPreHil|domprojh=ClSubSph