Metamath Proof Explorer


Definition df-hil

Description: Define class of all Hilbert spaces. Based on Proposition 4.5, p. 176, Gudrun Kalmbach, Quantum Measures and Spaces, Kluwer, Dordrecht, 1998. (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 16-Oct-2015)

Ref Expression
Assertion df-hil Hil = h PreHil | dom proj h = ClSubSp h

Detailed syntax breakdown

Step Hyp Ref Expression
0 chil class Hil
1 vh setvar h
2 cphl class PreHil
3 cpj class proj
4 1 cv setvar h
5 4 3 cfv class proj h
6 5 cdm class dom proj h
7 ccss class ClSubSp
8 4 7 cfv class ClSubSp h
9 6 8 wceq wff dom proj h = ClSubSp h
10 9 1 2 crab class h PreHil | dom proj h = ClSubSp h
11 0 10 wceq wff Hil = h PreHil | dom proj h = ClSubSp h