Metamath Proof Explorer


Definition df-obs

Description: Define the set of all orthonormal bases for a pre-Hilbert space. An orthonormal basis is a set of mutually orthogonal vectors with norm 1 and such that the linear span is dense in the whole space. (As this is an "algebraic" definition, before we have topology available, we express this denseness by saying that the double orthocomplement is the whole space, or equivalently, the single orthocomplement is trivial.) (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Assertion df-obs OBasis = h PreHil b 𝒫 Base h | x b y b x 𝑖 h y = if x = y 1 Scalar h 0 Scalar h ocv h b = 0 h

Detailed syntax breakdown

Step Hyp Ref Expression
0 cobs class OBasis
1 vh setvar h
2 cphl class PreHil
3 vb setvar b
4 cbs class Base
5 1 cv setvar h
6 5 4 cfv class Base h
7 6 cpw class 𝒫 Base h
8 vx setvar x
9 3 cv setvar b
10 vy setvar y
11 8 cv setvar x
12 cip class 𝑖
13 5 12 cfv class 𝑖 h
14 10 cv setvar y
15 11 14 13 co class x 𝑖 h y
16 11 14 wceq wff x = y
17 cur class 1 r
18 csca class Scalar
19 5 18 cfv class Scalar h
20 19 17 cfv class 1 Scalar h
21 c0g class 0 𝑔
22 19 21 cfv class 0 Scalar h
23 16 20 22 cif class if x = y 1 Scalar h 0 Scalar h
24 15 23 wceq wff x 𝑖 h y = if x = y 1 Scalar h 0 Scalar h
25 24 10 9 wral wff y b x 𝑖 h y = if x = y 1 Scalar h 0 Scalar h
26 25 8 9 wral wff x b y b x 𝑖 h y = if x = y 1 Scalar h 0 Scalar h
27 cocv class ocv
28 5 27 cfv class ocv h
29 9 28 cfv class ocv h b
30 5 21 cfv class 0 h
31 30 csn class 0 h
32 29 31 wceq wff ocv h b = 0 h
33 26 32 wa wff x b y b x 𝑖 h y = if x = y 1 Scalar h 0 Scalar h ocv h b = 0 h
34 33 3 7 crab class b 𝒫 Base h | x b y b x 𝑖 h y = if x = y 1 Scalar h 0 Scalar h ocv h b = 0 h
35 1 2 34 cmpt class h PreHil b 𝒫 Base h | x b y b x 𝑖 h y = if x = y 1 Scalar h 0 Scalar h ocv h b = 0 h
36 0 35 wceq wff OBasis = h PreHil b 𝒫 Base h | x b y b x 𝑖 h y = if x = y 1 Scalar h 0 Scalar h ocv h b = 0 h