Metamath Proof Explorer


Definition df-obs

Description: Define the set of all orthonormal bases for a pre-Hilbert space. An orthonormal basis is a set of mutually orthogonal vectors with norm 1 and such that the linear span is dense in the whole space. (As this is an "algebraic" definition, before we have topology available, we express this denseness by saying that the double orthocomplement is the whole space, or equivalently, the single orthocomplement is trivial.) (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Assertion df-obs OBasis=hPreHilb𝒫Baseh|xbybx𝑖hy=ifx=y1Scalarh0Scalarhocvhb=0h

Detailed syntax breakdown

Step Hyp Ref Expression
0 cobs classOBasis
1 vh setvarh
2 cphl classPreHil
3 vb setvarb
4 cbs classBase
5 1 cv setvarh
6 5 4 cfv classBaseh
7 6 cpw class𝒫Baseh
8 vx setvarx
9 3 cv setvarb
10 vy setvary
11 8 cv setvarx
12 cip class𝑖
13 5 12 cfv class𝑖h
14 10 cv setvary
15 11 14 13 co classx𝑖hy
16 11 14 wceq wffx=y
17 cur class1r
18 csca classScalar
19 5 18 cfv classScalarh
20 19 17 cfv class1Scalarh
21 c0g class0𝑔
22 19 21 cfv class0Scalarh
23 16 20 22 cif classifx=y1Scalarh0Scalarh
24 15 23 wceq wffx𝑖hy=ifx=y1Scalarh0Scalarh
25 24 10 9 wral wffybx𝑖hy=ifx=y1Scalarh0Scalarh
26 25 8 9 wral wffxbybx𝑖hy=ifx=y1Scalarh0Scalarh
27 cocv classocv
28 5 27 cfv classocvh
29 9 28 cfv classocvhb
30 5 21 cfv class0h
31 30 csn class0h
32 29 31 wceq wffocvhb=0h
33 26 32 wa wffxbybx𝑖hy=ifx=y1Scalarh0Scalarhocvhb=0h
34 33 3 7 crab classb𝒫Baseh|xbybx𝑖hy=ifx=y1Scalarh0Scalarhocvhb=0h
35 1 2 34 cmpt classhPreHilb𝒫Baseh|xbybx𝑖hy=ifx=y1Scalarh0Scalarhocvhb=0h
36 0 35 wceq wffOBasis=hPreHilb𝒫Baseh|xbybx𝑖hy=ifx=y1Scalarh0Scalarhocvhb=0h