Metamath Proof Explorer


Theorem pjfval

Description: The value of the projection function. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses pjfval.v V=BaseW
pjfval.l L=LSubSpW
pjfval.o ˙=ocvW
pjfval.p P=proj1W
pjfval.k K=projW
Assertion pjfval K=xLxP˙xV×VV

Proof

Step Hyp Ref Expression
1 pjfval.v V=BaseW
2 pjfval.l L=LSubSpW
3 pjfval.o ˙=ocvW
4 pjfval.p P=proj1W
5 pjfval.k K=projW
6 fveq2 w=WLSubSpw=LSubSpW
7 6 2 eqtr4di w=WLSubSpw=L
8 fveq2 w=Wproj1w=proj1W
9 8 4 eqtr4di w=Wproj1w=P
10 eqidd w=Wx=x
11 fveq2 w=Wocvw=ocvW
12 11 3 eqtr4di w=Wocvw=˙
13 12 fveq1d w=Wocvwx=˙x
14 9 10 13 oveq123d w=Wxproj1wocvwx=xP˙x
15 7 14 mpteq12dv w=WxLSubSpwxproj1wocvwx=xLxP˙x
16 fveq2 w=WBasew=BaseW
17 16 1 eqtr4di w=WBasew=V
18 17 17 oveq12d w=WBasewBasew=VV
19 18 xpeq2d w=WV×BasewBasew=V×VV
20 15 19 ineq12d w=WxLSubSpwxproj1wocvwxV×BasewBasew=xLxP˙xV×VV
21 df-pj proj=wVxLSubSpwxproj1wocvwxV×BasewBasew
22 2 fvexi LV
23 22 inex1 LVV
24 ovex VVV
25 24 inex2 VVVV
26 23 25 xpex LV×VVVV
27 eqid xLxP˙x=xLxP˙x
28 ovexd xLxP˙xV
29 27 28 fmpti xLxP˙x:LV
30 fssxp xLxP˙x:LVxLxP˙xL×V
31 ssrin xLxP˙xL×VxLxP˙xV×VVL×VV×VV
32 29 30 31 mp2b xLxP˙xV×VVL×VV×VV
33 inxp L×VV×VV=LV×VVV
34 32 33 sseqtri xLxP˙xV×VVLV×VVV
35 26 34 ssexi xLxP˙xV×VVV
36 20 21 35 fvmpt WVprojW=xLxP˙xV×VV
37 fvprc ¬WVprojW=
38 inss1 xLxP˙xV×VVxLxP˙x
39 fvprc ¬WVLSubSpW=
40 2 39 eqtrid ¬WVL=
41 40 mpteq1d ¬WVxLxP˙x=xxP˙x
42 mpt0 xxP˙x=
43 41 42 eqtrdi ¬WVxLxP˙x=
44 sseq0 xLxP˙xV×VVxLxP˙xxLxP˙x=xLxP˙xV×VV=
45 38 43 44 sylancr ¬WVxLxP˙xV×VV=
46 37 45 eqtr4d ¬WVprojW=xLxP˙xV×VV
47 36 46 pm2.61i projW=xLxP˙xV×VV
48 5 47 eqtri K=xLxP˙xV×VV