Metamath Proof Explorer


Theorem pjdm

Description: A subspace is in the domain of the projection function iff the subspace admits a projection decomposition of the whole space. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses pjfval.v V = Base W
pjfval.l L = LSubSp W
pjfval.o ˙ = ocv W
pjfval.p P = proj 1 W
pjfval.k K = proj W
Assertion pjdm T dom K T L T P ˙ T : V V

Proof

Step Hyp Ref Expression
1 pjfval.v V = Base W
2 pjfval.l L = LSubSp W
3 pjfval.o ˙ = ocv W
4 pjfval.p P = proj 1 W
5 pjfval.k K = proj W
6 id x = T x = T
7 fveq2 x = T ˙ x = ˙ T
8 6 7 oveq12d x = T x P ˙ x = T P ˙ T
9 8 eleq1d x = T x P ˙ x V V T P ˙ T V V
10 1 fvexi V V
11 10 10 elmap T P ˙ T V V T P ˙ T : V V
12 9 11 bitrdi x = T x P ˙ x V V T P ˙ T : V V
13 cnvin x L x P ˙ x V × V V -1 = x L x P ˙ x -1 V × V V -1
14 cnvxp V × V V -1 = V V × V
15 14 ineq2i x L x P ˙ x -1 V × V V -1 = x L x P ˙ x -1 V V × V
16 13 15 eqtri x L x P ˙ x V × V V -1 = x L x P ˙ x -1 V V × V
17 1 2 3 4 5 pjfval K = x L x P ˙ x V × V V
18 17 cnveqi K -1 = x L x P ˙ x V × V V -1
19 df-res x L x P ˙ x -1 V V = x L x P ˙ x -1 V V × V
20 16 18 19 3eqtr4i K -1 = x L x P ˙ x -1 V V
21 20 rneqi ran K -1 = ran x L x P ˙ x -1 V V
22 dfdm4 dom K = ran K -1
23 df-ima x L x P ˙ x -1 V V = ran x L x P ˙ x -1 V V
24 21 22 23 3eqtr4i dom K = x L x P ˙ x -1 V V
25 eqid x L x P ˙ x = x L x P ˙ x
26 25 mptpreima x L x P ˙ x -1 V V = x L | x P ˙ x V V
27 24 26 eqtri dom K = x L | x P ˙ x V V
28 12 27 elrab2 T dom K T L T P ˙ T : V V