Description: A subspace is in the domain of the projection function iff the subspace admits a projection decomposition of the whole space. (Contributed by Mario Carneiro, 16-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pjfval.v | |
|
pjfval.l | |
||
pjfval.o | |
||
pjfval.p | |
||
pjfval.k | |
||
Assertion | pjdm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjfval.v | |
|
2 | pjfval.l | |
|
3 | pjfval.o | |
|
4 | pjfval.p | |
|
5 | pjfval.k | |
|
6 | id | |
|
7 | fveq2 | |
|
8 | 6 7 | oveq12d | |
9 | 8 | eleq1d | |
10 | 1 | fvexi | |
11 | 10 10 | elmap | |
12 | 9 11 | bitrdi | |
13 | cnvin | |
|
14 | cnvxp | |
|
15 | 14 | ineq2i | |
16 | 13 15 | eqtri | |
17 | 1 2 3 4 5 | pjfval | |
18 | 17 | cnveqi | |
19 | df-res | |
|
20 | 16 18 19 | 3eqtr4i | |
21 | 20 | rneqi | |
22 | dfdm4 | |
|
23 | df-ima | |
|
24 | 21 22 23 | 3eqtr4i | |
25 | eqid | |
|
26 | 25 | mptpreima | |
27 | 24 26 | eqtri | |
28 | 12 27 | elrab2 | |