Metamath Proof Explorer


Theorem pjdm

Description: A subspace is in the domain of the projection function iff the subspace admits a projection decomposition of the whole space. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses pjfval.v V=BaseW
pjfval.l L=LSubSpW
pjfval.o ˙=ocvW
pjfval.p P=proj1W
pjfval.k K=projW
Assertion pjdm TdomKTLTP˙T:VV

Proof

Step Hyp Ref Expression
1 pjfval.v V=BaseW
2 pjfval.l L=LSubSpW
3 pjfval.o ˙=ocvW
4 pjfval.p P=proj1W
5 pjfval.k K=projW
6 id x=Tx=T
7 fveq2 x=T˙x=˙T
8 6 7 oveq12d x=TxP˙x=TP˙T
9 8 eleq1d x=TxP˙xVVTP˙TVV
10 1 fvexi VV
11 10 10 elmap TP˙TVVTP˙T:VV
12 9 11 bitrdi x=TxP˙xVVTP˙T:VV
13 cnvin xLxP˙xV×VV-1=xLxP˙x-1V×VV-1
14 cnvxp V×VV-1=VV×V
15 14 ineq2i xLxP˙x-1V×VV-1=xLxP˙x-1VV×V
16 13 15 eqtri xLxP˙xV×VV-1=xLxP˙x-1VV×V
17 1 2 3 4 5 pjfval K=xLxP˙xV×VV
18 17 cnveqi K-1=xLxP˙xV×VV-1
19 df-res xLxP˙x-1VV=xLxP˙x-1VV×V
20 16 18 19 3eqtr4i K-1=xLxP˙x-1VV
21 20 rneqi ranK-1=ranxLxP˙x-1VV
22 dfdm4 domK=ranK-1
23 df-ima xLxP˙x-1VV=ranxLxP˙x-1VV
24 21 22 23 3eqtr4i domK=xLxP˙x-1VV
25 eqid xLxP˙x=xLxP˙x
26 25 mptpreima xLxP˙x-1VV=xL|xP˙xVV
27 24 26 eqtri domK=xL|xP˙xVV
28 12 27 elrab2 TdomKTLTP˙T:VV