| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjfval.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | pjfval.l | ⊢ 𝐿  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 3 |  | pjfval.o | ⊢  ⊥   =  ( ocv ‘ 𝑊 ) | 
						
							| 4 |  | pjfval.p | ⊢ 𝑃  =  ( proj1 ‘ 𝑊 ) | 
						
							| 5 |  | pjfval.k | ⊢ 𝐾  =  ( proj ‘ 𝑊 ) | 
						
							| 6 |  | id | ⊢ ( 𝑥  =  𝑇  →  𝑥  =  𝑇 ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑥  =  𝑇  →  (  ⊥  ‘ 𝑥 )  =  (  ⊥  ‘ 𝑇 ) ) | 
						
							| 8 | 6 7 | oveq12d | ⊢ ( 𝑥  =  𝑇  →  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) )  =  ( 𝑇 𝑃 (  ⊥  ‘ 𝑇 ) ) ) | 
						
							| 9 | 8 | eleq1d | ⊢ ( 𝑥  =  𝑇  →  ( ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) )  ∈  ( 𝑉  ↑m  𝑉 )  ↔  ( 𝑇 𝑃 (  ⊥  ‘ 𝑇 ) )  ∈  ( 𝑉  ↑m  𝑉 ) ) ) | 
						
							| 10 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 11 | 10 10 | elmap | ⊢ ( ( 𝑇 𝑃 (  ⊥  ‘ 𝑇 ) )  ∈  ( 𝑉  ↑m  𝑉 )  ↔  ( 𝑇 𝑃 (  ⊥  ‘ 𝑇 ) ) : 𝑉 ⟶ 𝑉 ) | 
						
							| 12 | 9 11 | bitrdi | ⊢ ( 𝑥  =  𝑇  →  ( ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) )  ∈  ( 𝑉  ↑m  𝑉 )  ↔  ( 𝑇 𝑃 (  ⊥  ‘ 𝑇 ) ) : 𝑉 ⟶ 𝑉 ) ) | 
						
							| 13 |  | cnvin | ⊢ ◡ ( ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ∩  ( V  ×  ( 𝑉  ↑m  𝑉 ) ) )  =  ( ◡ ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ∩  ◡ ( V  ×  ( 𝑉  ↑m  𝑉 ) ) ) | 
						
							| 14 |  | cnvxp | ⊢ ◡ ( V  ×  ( 𝑉  ↑m  𝑉 ) )  =  ( ( 𝑉  ↑m  𝑉 )  ×  V ) | 
						
							| 15 | 14 | ineq2i | ⊢ ( ◡ ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ∩  ◡ ( V  ×  ( 𝑉  ↑m  𝑉 ) ) )  =  ( ◡ ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ∩  ( ( 𝑉  ↑m  𝑉 )  ×  V ) ) | 
						
							| 16 | 13 15 | eqtri | ⊢ ◡ ( ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ∩  ( V  ×  ( 𝑉  ↑m  𝑉 ) ) )  =  ( ◡ ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ∩  ( ( 𝑉  ↑m  𝑉 )  ×  V ) ) | 
						
							| 17 | 1 2 3 4 5 | pjfval | ⊢ 𝐾  =  ( ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ∩  ( V  ×  ( 𝑉  ↑m  𝑉 ) ) ) | 
						
							| 18 | 17 | cnveqi | ⊢ ◡ 𝐾  =  ◡ ( ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ∩  ( V  ×  ( 𝑉  ↑m  𝑉 ) ) ) | 
						
							| 19 |  | df-res | ⊢ ( ◡ ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ↾  ( 𝑉  ↑m  𝑉 ) )  =  ( ◡ ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ∩  ( ( 𝑉  ↑m  𝑉 )  ×  V ) ) | 
						
							| 20 | 16 18 19 | 3eqtr4i | ⊢ ◡ 𝐾  =  ( ◡ ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ↾  ( 𝑉  ↑m  𝑉 ) ) | 
						
							| 21 | 20 | rneqi | ⊢ ran  ◡ 𝐾  =  ran  ( ◡ ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ↾  ( 𝑉  ↑m  𝑉 ) ) | 
						
							| 22 |  | dfdm4 | ⊢ dom  𝐾  =  ran  ◡ 𝐾 | 
						
							| 23 |  | df-ima | ⊢ ( ◡ ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  “  ( 𝑉  ↑m  𝑉 ) )  =  ran  ( ◡ ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ↾  ( 𝑉  ↑m  𝑉 ) ) | 
						
							| 24 | 21 22 23 | 3eqtr4i | ⊢ dom  𝐾  =  ( ◡ ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  “  ( 𝑉  ↑m  𝑉 ) ) | 
						
							| 25 |  | eqid | ⊢ ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) ) | 
						
							| 26 | 25 | mptpreima | ⊢ ( ◡ ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  “  ( 𝑉  ↑m  𝑉 ) )  =  { 𝑥  ∈  𝐿  ∣  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) )  ∈  ( 𝑉  ↑m  𝑉 ) } | 
						
							| 27 | 24 26 | eqtri | ⊢ dom  𝐾  =  { 𝑥  ∈  𝐿  ∣  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) )  ∈  ( 𝑉  ↑m  𝑉 ) } | 
						
							| 28 | 12 27 | elrab2 | ⊢ ( 𝑇  ∈  dom  𝐾  ↔  ( 𝑇  ∈  𝐿  ∧  ( 𝑇 𝑃 (  ⊥  ‘ 𝑇 ) ) : 𝑉 ⟶ 𝑉 ) ) |