Step |
Hyp |
Ref |
Expression |
1 |
|
pjfval.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
pjfval.l |
⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) |
3 |
|
pjfval.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
4 |
|
pjfval.p |
⊢ 𝑃 = ( proj1 ‘ 𝑊 ) |
5 |
|
pjfval.k |
⊢ 𝐾 = ( proj ‘ 𝑊 ) |
6 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( LSubSp ‘ 𝑤 ) = ( LSubSp ‘ 𝑊 ) ) |
7 |
6 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( LSubSp ‘ 𝑤 ) = 𝐿 ) |
8 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( proj1 ‘ 𝑤 ) = ( proj1 ‘ 𝑊 ) ) |
9 |
8 4
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( proj1 ‘ 𝑤 ) = 𝑃 ) |
10 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → 𝑥 = 𝑥 ) |
11 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ocv ‘ 𝑤 ) = ( ocv ‘ 𝑊 ) ) |
12 |
11 3
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ocv ‘ 𝑤 ) = ⊥ ) |
13 |
12
|
fveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( ocv ‘ 𝑤 ) ‘ 𝑥 ) = ( ⊥ ‘ 𝑥 ) ) |
14 |
9 10 13
|
oveq123d |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 ( proj1 ‘ 𝑤 ) ( ( ocv ‘ 𝑤 ) ‘ 𝑥 ) ) = ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) |
15 |
7 14
|
mpteq12dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 ∈ ( LSubSp ‘ 𝑤 ) ↦ ( 𝑥 ( proj1 ‘ 𝑤 ) ( ( ocv ‘ 𝑤 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐿 ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) ) |
16 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
17 |
16 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝑉 ) |
18 |
17 17
|
oveq12d |
⊢ ( 𝑤 = 𝑊 → ( ( Base ‘ 𝑤 ) ↑m ( Base ‘ 𝑤 ) ) = ( 𝑉 ↑m 𝑉 ) ) |
19 |
18
|
xpeq2d |
⊢ ( 𝑤 = 𝑊 → ( V × ( ( Base ‘ 𝑤 ) ↑m ( Base ‘ 𝑤 ) ) ) = ( V × ( 𝑉 ↑m 𝑉 ) ) ) |
20 |
15 19
|
ineq12d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑥 ∈ ( LSubSp ‘ 𝑤 ) ↦ ( 𝑥 ( proj1 ‘ 𝑤 ) ( ( ocv ‘ 𝑤 ) ‘ 𝑥 ) ) ) ∩ ( V × ( ( Base ‘ 𝑤 ) ↑m ( Base ‘ 𝑤 ) ) ) ) = ( ( 𝑥 ∈ 𝐿 ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) ∩ ( V × ( 𝑉 ↑m 𝑉 ) ) ) ) |
21 |
|
df-pj |
⊢ proj = ( 𝑤 ∈ V ↦ ( ( 𝑥 ∈ ( LSubSp ‘ 𝑤 ) ↦ ( 𝑥 ( proj1 ‘ 𝑤 ) ( ( ocv ‘ 𝑤 ) ‘ 𝑥 ) ) ) ∩ ( V × ( ( Base ‘ 𝑤 ) ↑m ( Base ‘ 𝑤 ) ) ) ) ) |
22 |
2
|
fvexi |
⊢ 𝐿 ∈ V |
23 |
22
|
inex1 |
⊢ ( 𝐿 ∩ V ) ∈ V |
24 |
|
ovex |
⊢ ( 𝑉 ↑m 𝑉 ) ∈ V |
25 |
24
|
inex2 |
⊢ ( V ∩ ( 𝑉 ↑m 𝑉 ) ) ∈ V |
26 |
23 25
|
xpex |
⊢ ( ( 𝐿 ∩ V ) × ( V ∩ ( 𝑉 ↑m 𝑉 ) ) ) ∈ V |
27 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐿 ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐿 ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) |
28 |
|
ovexd |
⊢ ( 𝑥 ∈ 𝐿 → ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ∈ V ) |
29 |
27 28
|
fmpti |
⊢ ( 𝑥 ∈ 𝐿 ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) : 𝐿 ⟶ V |
30 |
|
fssxp |
⊢ ( ( 𝑥 ∈ 𝐿 ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) : 𝐿 ⟶ V → ( 𝑥 ∈ 𝐿 ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) ⊆ ( 𝐿 × V ) ) |
31 |
|
ssrin |
⊢ ( ( 𝑥 ∈ 𝐿 ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) ⊆ ( 𝐿 × V ) → ( ( 𝑥 ∈ 𝐿 ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) ∩ ( V × ( 𝑉 ↑m 𝑉 ) ) ) ⊆ ( ( 𝐿 × V ) ∩ ( V × ( 𝑉 ↑m 𝑉 ) ) ) ) |
32 |
29 30 31
|
mp2b |
⊢ ( ( 𝑥 ∈ 𝐿 ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) ∩ ( V × ( 𝑉 ↑m 𝑉 ) ) ) ⊆ ( ( 𝐿 × V ) ∩ ( V × ( 𝑉 ↑m 𝑉 ) ) ) |
33 |
|
inxp |
⊢ ( ( 𝐿 × V ) ∩ ( V × ( 𝑉 ↑m 𝑉 ) ) ) = ( ( 𝐿 ∩ V ) × ( V ∩ ( 𝑉 ↑m 𝑉 ) ) ) |
34 |
32 33
|
sseqtri |
⊢ ( ( 𝑥 ∈ 𝐿 ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) ∩ ( V × ( 𝑉 ↑m 𝑉 ) ) ) ⊆ ( ( 𝐿 ∩ V ) × ( V ∩ ( 𝑉 ↑m 𝑉 ) ) ) |
35 |
26 34
|
ssexi |
⊢ ( ( 𝑥 ∈ 𝐿 ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) ∩ ( V × ( 𝑉 ↑m 𝑉 ) ) ) ∈ V |
36 |
20 21 35
|
fvmpt |
⊢ ( 𝑊 ∈ V → ( proj ‘ 𝑊 ) = ( ( 𝑥 ∈ 𝐿 ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) ∩ ( V × ( 𝑉 ↑m 𝑉 ) ) ) ) |
37 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( proj ‘ 𝑊 ) = ∅ ) |
38 |
|
inss1 |
⊢ ( ( 𝑥 ∈ 𝐿 ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) ∩ ( V × ( 𝑉 ↑m 𝑉 ) ) ) ⊆ ( 𝑥 ∈ 𝐿 ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) |
39 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( LSubSp ‘ 𝑊 ) = ∅ ) |
40 |
2 39
|
eqtrid |
⊢ ( ¬ 𝑊 ∈ V → 𝐿 = ∅ ) |
41 |
40
|
mpteq1d |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑥 ∈ 𝐿 ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ∅ ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) ) |
42 |
|
mpt0 |
⊢ ( 𝑥 ∈ ∅ ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) = ∅ |
43 |
41 42
|
eqtrdi |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑥 ∈ 𝐿 ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) = ∅ ) |
44 |
|
sseq0 |
⊢ ( ( ( ( 𝑥 ∈ 𝐿 ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) ∩ ( V × ( 𝑉 ↑m 𝑉 ) ) ) ⊆ ( 𝑥 ∈ 𝐿 ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∈ 𝐿 ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) = ∅ ) → ( ( 𝑥 ∈ 𝐿 ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) ∩ ( V × ( 𝑉 ↑m 𝑉 ) ) ) = ∅ ) |
45 |
38 43 44
|
sylancr |
⊢ ( ¬ 𝑊 ∈ V → ( ( 𝑥 ∈ 𝐿 ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) ∩ ( V × ( 𝑉 ↑m 𝑉 ) ) ) = ∅ ) |
46 |
37 45
|
eqtr4d |
⊢ ( ¬ 𝑊 ∈ V → ( proj ‘ 𝑊 ) = ( ( 𝑥 ∈ 𝐿 ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) ∩ ( V × ( 𝑉 ↑m 𝑉 ) ) ) ) |
47 |
36 46
|
pm2.61i |
⊢ ( proj ‘ 𝑊 ) = ( ( 𝑥 ∈ 𝐿 ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) ∩ ( V × ( 𝑉 ↑m 𝑉 ) ) ) |
48 |
5 47
|
eqtri |
⊢ 𝐾 = ( ( 𝑥 ∈ 𝐿 ↦ ( 𝑥 𝑃 ( ⊥ ‘ 𝑥 ) ) ) ∩ ( V × ( 𝑉 ↑m 𝑉 ) ) ) |