| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjfval.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | pjfval.l | ⊢ 𝐿  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 3 |  | pjfval.o | ⊢  ⊥   =  ( ocv ‘ 𝑊 ) | 
						
							| 4 |  | pjfval.p | ⊢ 𝑃  =  ( proj1 ‘ 𝑊 ) | 
						
							| 5 |  | pjfval.k | ⊢ 𝐾  =  ( proj ‘ 𝑊 ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( LSubSp ‘ 𝑤 )  =  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 7 | 6 2 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( LSubSp ‘ 𝑤 )  =  𝐿 ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( proj1 ‘ 𝑤 )  =  ( proj1 ‘ 𝑊 ) ) | 
						
							| 9 | 8 4 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( proj1 ‘ 𝑤 )  =  𝑃 ) | 
						
							| 10 |  | eqidd | ⊢ ( 𝑤  =  𝑊  →  𝑥  =  𝑥 ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( ocv ‘ 𝑤 )  =  ( ocv ‘ 𝑊 ) ) | 
						
							| 12 | 11 3 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( ocv ‘ 𝑤 )  =   ⊥  ) | 
						
							| 13 | 12 | fveq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( ocv ‘ 𝑤 ) ‘ 𝑥 )  =  (  ⊥  ‘ 𝑥 ) ) | 
						
							| 14 | 9 10 13 | oveq123d | ⊢ ( 𝑤  =  𝑊  →  ( 𝑥 ( proj1 ‘ 𝑤 ) ( ( ocv ‘ 𝑤 ) ‘ 𝑥 ) )  =  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) ) | 
						
							| 15 | 7 14 | mpteq12dv | ⊢ ( 𝑤  =  𝑊  →  ( 𝑥  ∈  ( LSubSp ‘ 𝑤 )  ↦  ( 𝑥 ( proj1 ‘ 𝑤 ) ( ( ocv ‘ 𝑤 ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( Base ‘ 𝑤 )  =  ( Base ‘ 𝑊 ) ) | 
						
							| 17 | 16 1 | eqtr4di | ⊢ ( 𝑤  =  𝑊  →  ( Base ‘ 𝑤 )  =  𝑉 ) | 
						
							| 18 | 17 17 | oveq12d | ⊢ ( 𝑤  =  𝑊  →  ( ( Base ‘ 𝑤 )  ↑m  ( Base ‘ 𝑤 ) )  =  ( 𝑉  ↑m  𝑉 ) ) | 
						
							| 19 | 18 | xpeq2d | ⊢ ( 𝑤  =  𝑊  →  ( V  ×  ( ( Base ‘ 𝑤 )  ↑m  ( Base ‘ 𝑤 ) ) )  =  ( V  ×  ( 𝑉  ↑m  𝑉 ) ) ) | 
						
							| 20 | 15 19 | ineq12d | ⊢ ( 𝑤  =  𝑊  →  ( ( 𝑥  ∈  ( LSubSp ‘ 𝑤 )  ↦  ( 𝑥 ( proj1 ‘ 𝑤 ) ( ( ocv ‘ 𝑤 ) ‘ 𝑥 ) ) )  ∩  ( V  ×  ( ( Base ‘ 𝑤 )  ↑m  ( Base ‘ 𝑤 ) ) ) )  =  ( ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ∩  ( V  ×  ( 𝑉  ↑m  𝑉 ) ) ) ) | 
						
							| 21 |  | df-pj | ⊢ proj  =  ( 𝑤  ∈  V  ↦  ( ( 𝑥  ∈  ( LSubSp ‘ 𝑤 )  ↦  ( 𝑥 ( proj1 ‘ 𝑤 ) ( ( ocv ‘ 𝑤 ) ‘ 𝑥 ) ) )  ∩  ( V  ×  ( ( Base ‘ 𝑤 )  ↑m  ( Base ‘ 𝑤 ) ) ) ) ) | 
						
							| 22 | 2 | fvexi | ⊢ 𝐿  ∈  V | 
						
							| 23 | 22 | inex1 | ⊢ ( 𝐿  ∩  V )  ∈  V | 
						
							| 24 |  | ovex | ⊢ ( 𝑉  ↑m  𝑉 )  ∈  V | 
						
							| 25 | 24 | inex2 | ⊢ ( V  ∩  ( 𝑉  ↑m  𝑉 ) )  ∈  V | 
						
							| 26 | 23 25 | xpex | ⊢ ( ( 𝐿  ∩  V )  ×  ( V  ∩  ( 𝑉  ↑m  𝑉 ) ) )  ∈  V | 
						
							| 27 |  | eqid | ⊢ ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) ) | 
						
							| 28 |  | ovexd | ⊢ ( 𝑥  ∈  𝐿  →  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) )  ∈  V ) | 
						
							| 29 | 27 28 | fmpti | ⊢ ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) ) : 𝐿 ⟶ V | 
						
							| 30 |  | fssxp | ⊢ ( ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) ) : 𝐿 ⟶ V  →  ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ⊆  ( 𝐿  ×  V ) ) | 
						
							| 31 |  | ssrin | ⊢ ( ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ⊆  ( 𝐿  ×  V )  →  ( ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ∩  ( V  ×  ( 𝑉  ↑m  𝑉 ) ) )  ⊆  ( ( 𝐿  ×  V )  ∩  ( V  ×  ( 𝑉  ↑m  𝑉 ) ) ) ) | 
						
							| 32 | 29 30 31 | mp2b | ⊢ ( ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ∩  ( V  ×  ( 𝑉  ↑m  𝑉 ) ) )  ⊆  ( ( 𝐿  ×  V )  ∩  ( V  ×  ( 𝑉  ↑m  𝑉 ) ) ) | 
						
							| 33 |  | inxp | ⊢ ( ( 𝐿  ×  V )  ∩  ( V  ×  ( 𝑉  ↑m  𝑉 ) ) )  =  ( ( 𝐿  ∩  V )  ×  ( V  ∩  ( 𝑉  ↑m  𝑉 ) ) ) | 
						
							| 34 | 32 33 | sseqtri | ⊢ ( ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ∩  ( V  ×  ( 𝑉  ↑m  𝑉 ) ) )  ⊆  ( ( 𝐿  ∩  V )  ×  ( V  ∩  ( 𝑉  ↑m  𝑉 ) ) ) | 
						
							| 35 | 26 34 | ssexi | ⊢ ( ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ∩  ( V  ×  ( 𝑉  ↑m  𝑉 ) ) )  ∈  V | 
						
							| 36 | 20 21 35 | fvmpt | ⊢ ( 𝑊  ∈  V  →  ( proj ‘ 𝑊 )  =  ( ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ∩  ( V  ×  ( 𝑉  ↑m  𝑉 ) ) ) ) | 
						
							| 37 |  | fvprc | ⊢ ( ¬  𝑊  ∈  V  →  ( proj ‘ 𝑊 )  =  ∅ ) | 
						
							| 38 |  | inss1 | ⊢ ( ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ∩  ( V  ×  ( 𝑉  ↑m  𝑉 ) ) )  ⊆  ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) ) | 
						
							| 39 |  | fvprc | ⊢ ( ¬  𝑊  ∈  V  →  ( LSubSp ‘ 𝑊 )  =  ∅ ) | 
						
							| 40 | 2 39 | eqtrid | ⊢ ( ¬  𝑊  ∈  V  →  𝐿  =  ∅ ) | 
						
							| 41 | 40 | mpteq1d | ⊢ ( ¬  𝑊  ∈  V  →  ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ∅  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) ) ) | 
						
							| 42 |  | mpt0 | ⊢ ( 𝑥  ∈  ∅  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  =  ∅ | 
						
							| 43 | 41 42 | eqtrdi | ⊢ ( ¬  𝑊  ∈  V  →  ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  =  ∅ ) | 
						
							| 44 |  | sseq0 | ⊢ ( ( ( ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ∩  ( V  ×  ( 𝑉  ↑m  𝑉 ) ) )  ⊆  ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ∧  ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  =  ∅ )  →  ( ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ∩  ( V  ×  ( 𝑉  ↑m  𝑉 ) ) )  =  ∅ ) | 
						
							| 45 | 38 43 44 | sylancr | ⊢ ( ¬  𝑊  ∈  V  →  ( ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ∩  ( V  ×  ( 𝑉  ↑m  𝑉 ) ) )  =  ∅ ) | 
						
							| 46 | 37 45 | eqtr4d | ⊢ ( ¬  𝑊  ∈  V  →  ( proj ‘ 𝑊 )  =  ( ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ∩  ( V  ×  ( 𝑉  ↑m  𝑉 ) ) ) ) | 
						
							| 47 | 36 46 | pm2.61i | ⊢ ( proj ‘ 𝑊 )  =  ( ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ∩  ( V  ×  ( 𝑉  ↑m  𝑉 ) ) ) | 
						
							| 48 | 5 47 | eqtri | ⊢ 𝐾  =  ( ( 𝑥  ∈  𝐿  ↦  ( 𝑥 𝑃 (  ⊥  ‘ 𝑥 ) ) )  ∩  ( V  ×  ( 𝑉  ↑m  𝑉 ) ) ) |