Metamath Proof Explorer


Theorem pjfval

Description: The value of the projection function. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses pjfval.v 𝑉 = ( Base ‘ 𝑊 )
pjfval.l 𝐿 = ( LSubSp ‘ 𝑊 )
pjfval.o = ( ocv ‘ 𝑊 )
pjfval.p 𝑃 = ( proj1𝑊 )
pjfval.k 𝐾 = ( proj ‘ 𝑊 )
Assertion pjfval 𝐾 = ( ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) ∩ ( V × ( 𝑉m 𝑉 ) ) )

Proof

Step Hyp Ref Expression
1 pjfval.v 𝑉 = ( Base ‘ 𝑊 )
2 pjfval.l 𝐿 = ( LSubSp ‘ 𝑊 )
3 pjfval.o = ( ocv ‘ 𝑊 )
4 pjfval.p 𝑃 = ( proj1𝑊 )
5 pjfval.k 𝐾 = ( proj ‘ 𝑊 )
6 fveq2 ( 𝑤 = 𝑊 → ( LSubSp ‘ 𝑤 ) = ( LSubSp ‘ 𝑊 ) )
7 6 2 eqtr4di ( 𝑤 = 𝑊 → ( LSubSp ‘ 𝑤 ) = 𝐿 )
8 fveq2 ( 𝑤 = 𝑊 → ( proj1𝑤 ) = ( proj1𝑊 ) )
9 8 4 eqtr4di ( 𝑤 = 𝑊 → ( proj1𝑤 ) = 𝑃 )
10 eqidd ( 𝑤 = 𝑊𝑥 = 𝑥 )
11 fveq2 ( 𝑤 = 𝑊 → ( ocv ‘ 𝑤 ) = ( ocv ‘ 𝑊 ) )
12 11 3 eqtr4di ( 𝑤 = 𝑊 → ( ocv ‘ 𝑤 ) = )
13 12 fveq1d ( 𝑤 = 𝑊 → ( ( ocv ‘ 𝑤 ) ‘ 𝑥 ) = ( 𝑥 ) )
14 9 10 13 oveq123d ( 𝑤 = 𝑊 → ( 𝑥 ( proj1𝑤 ) ( ( ocv ‘ 𝑤 ) ‘ 𝑥 ) ) = ( 𝑥 𝑃 ( 𝑥 ) ) )
15 7 14 mpteq12dv ( 𝑤 = 𝑊 → ( 𝑥 ∈ ( LSubSp ‘ 𝑤 ) ↦ ( 𝑥 ( proj1𝑤 ) ( ( ocv ‘ 𝑤 ) ‘ 𝑥 ) ) ) = ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) )
16 fveq2 ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) )
17 16 1 eqtr4di ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝑉 )
18 17 17 oveq12d ( 𝑤 = 𝑊 → ( ( Base ‘ 𝑤 ) ↑m ( Base ‘ 𝑤 ) ) = ( 𝑉m 𝑉 ) )
19 18 xpeq2d ( 𝑤 = 𝑊 → ( V × ( ( Base ‘ 𝑤 ) ↑m ( Base ‘ 𝑤 ) ) ) = ( V × ( 𝑉m 𝑉 ) ) )
20 15 19 ineq12d ( 𝑤 = 𝑊 → ( ( 𝑥 ∈ ( LSubSp ‘ 𝑤 ) ↦ ( 𝑥 ( proj1𝑤 ) ( ( ocv ‘ 𝑤 ) ‘ 𝑥 ) ) ) ∩ ( V × ( ( Base ‘ 𝑤 ) ↑m ( Base ‘ 𝑤 ) ) ) ) = ( ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) ∩ ( V × ( 𝑉m 𝑉 ) ) ) )
21 df-pj proj = ( 𝑤 ∈ V ↦ ( ( 𝑥 ∈ ( LSubSp ‘ 𝑤 ) ↦ ( 𝑥 ( proj1𝑤 ) ( ( ocv ‘ 𝑤 ) ‘ 𝑥 ) ) ) ∩ ( V × ( ( Base ‘ 𝑤 ) ↑m ( Base ‘ 𝑤 ) ) ) ) )
22 2 fvexi 𝐿 ∈ V
23 22 inex1 ( 𝐿 ∩ V ) ∈ V
24 ovex ( 𝑉m 𝑉 ) ∈ V
25 24 inex2 ( V ∩ ( 𝑉m 𝑉 ) ) ∈ V
26 23 25 xpex ( ( 𝐿 ∩ V ) × ( V ∩ ( 𝑉m 𝑉 ) ) ) ∈ V
27 eqid ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) = ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) )
28 ovexd ( 𝑥𝐿 → ( 𝑥 𝑃 ( 𝑥 ) ) ∈ V )
29 27 28 fmpti ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) : 𝐿 ⟶ V
30 fssxp ( ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) : 𝐿 ⟶ V → ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) ⊆ ( 𝐿 × V ) )
31 ssrin ( ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) ⊆ ( 𝐿 × V ) → ( ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) ∩ ( V × ( 𝑉m 𝑉 ) ) ) ⊆ ( ( 𝐿 × V ) ∩ ( V × ( 𝑉m 𝑉 ) ) ) )
32 29 30 31 mp2b ( ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) ∩ ( V × ( 𝑉m 𝑉 ) ) ) ⊆ ( ( 𝐿 × V ) ∩ ( V × ( 𝑉m 𝑉 ) ) )
33 inxp ( ( 𝐿 × V ) ∩ ( V × ( 𝑉m 𝑉 ) ) ) = ( ( 𝐿 ∩ V ) × ( V ∩ ( 𝑉m 𝑉 ) ) )
34 32 33 sseqtri ( ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) ∩ ( V × ( 𝑉m 𝑉 ) ) ) ⊆ ( ( 𝐿 ∩ V ) × ( V ∩ ( 𝑉m 𝑉 ) ) )
35 26 34 ssexi ( ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) ∩ ( V × ( 𝑉m 𝑉 ) ) ) ∈ V
36 20 21 35 fvmpt ( 𝑊 ∈ V → ( proj ‘ 𝑊 ) = ( ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) ∩ ( V × ( 𝑉m 𝑉 ) ) ) )
37 fvprc ( ¬ 𝑊 ∈ V → ( proj ‘ 𝑊 ) = ∅ )
38 inss1 ( ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) ∩ ( V × ( 𝑉m 𝑉 ) ) ) ⊆ ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) )
39 fvprc ( ¬ 𝑊 ∈ V → ( LSubSp ‘ 𝑊 ) = ∅ )
40 2 39 syl5eq ( ¬ 𝑊 ∈ V → 𝐿 = ∅ )
41 40 mpteq1d ( ¬ 𝑊 ∈ V → ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) = ( 𝑥 ∈ ∅ ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) )
42 mpt0 ( 𝑥 ∈ ∅ ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) = ∅
43 41 42 eqtrdi ( ¬ 𝑊 ∈ V → ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) = ∅ )
44 sseq0 ( ( ( ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) ∩ ( V × ( 𝑉m 𝑉 ) ) ) ⊆ ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) ∧ ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) = ∅ ) → ( ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) ∩ ( V × ( 𝑉m 𝑉 ) ) ) = ∅ )
45 38 43 44 sylancr ( ¬ 𝑊 ∈ V → ( ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) ∩ ( V × ( 𝑉m 𝑉 ) ) ) = ∅ )
46 37 45 eqtr4d ( ¬ 𝑊 ∈ V → ( proj ‘ 𝑊 ) = ( ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) ∩ ( V × ( 𝑉m 𝑉 ) ) ) )
47 36 46 pm2.61i ( proj ‘ 𝑊 ) = ( ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) ∩ ( V × ( 𝑉m 𝑉 ) ) )
48 5 47 eqtri 𝐾 = ( ( 𝑥𝐿 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) ) ∩ ( V × ( 𝑉m 𝑉 ) ) )