| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjfval.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | pjfval.l |  |-  L = ( LSubSp ` W ) | 
						
							| 3 |  | pjfval.o |  |-  ._|_ = ( ocv ` W ) | 
						
							| 4 |  | pjfval.p |  |-  P = ( proj1 ` W ) | 
						
							| 5 |  | pjfval.k |  |-  K = ( proj ` W ) | 
						
							| 6 |  | fveq2 |  |-  ( w = W -> ( LSubSp ` w ) = ( LSubSp ` W ) ) | 
						
							| 7 | 6 2 | eqtr4di |  |-  ( w = W -> ( LSubSp ` w ) = L ) | 
						
							| 8 |  | fveq2 |  |-  ( w = W -> ( proj1 ` w ) = ( proj1 ` W ) ) | 
						
							| 9 | 8 4 | eqtr4di |  |-  ( w = W -> ( proj1 ` w ) = P ) | 
						
							| 10 |  | eqidd |  |-  ( w = W -> x = x ) | 
						
							| 11 |  | fveq2 |  |-  ( w = W -> ( ocv ` w ) = ( ocv ` W ) ) | 
						
							| 12 | 11 3 | eqtr4di |  |-  ( w = W -> ( ocv ` w ) = ._|_ ) | 
						
							| 13 | 12 | fveq1d |  |-  ( w = W -> ( ( ocv ` w ) ` x ) = ( ._|_ ` x ) ) | 
						
							| 14 | 9 10 13 | oveq123d |  |-  ( w = W -> ( x ( proj1 ` w ) ( ( ocv ` w ) ` x ) ) = ( x P ( ._|_ ` x ) ) ) | 
						
							| 15 | 7 14 | mpteq12dv |  |-  ( w = W -> ( x e. ( LSubSp ` w ) |-> ( x ( proj1 ` w ) ( ( ocv ` w ) ` x ) ) ) = ( x e. L |-> ( x P ( ._|_ ` x ) ) ) ) | 
						
							| 16 |  | fveq2 |  |-  ( w = W -> ( Base ` w ) = ( Base ` W ) ) | 
						
							| 17 | 16 1 | eqtr4di |  |-  ( w = W -> ( Base ` w ) = V ) | 
						
							| 18 | 17 17 | oveq12d |  |-  ( w = W -> ( ( Base ` w ) ^m ( Base ` w ) ) = ( V ^m V ) ) | 
						
							| 19 | 18 | xpeq2d |  |-  ( w = W -> ( _V X. ( ( Base ` w ) ^m ( Base ` w ) ) ) = ( _V X. ( V ^m V ) ) ) | 
						
							| 20 | 15 19 | ineq12d |  |-  ( w = W -> ( ( x e. ( LSubSp ` w ) |-> ( x ( proj1 ` w ) ( ( ocv ` w ) ` x ) ) ) i^i ( _V X. ( ( Base ` w ) ^m ( Base ` w ) ) ) ) = ( ( x e. L |-> ( x P ( ._|_ ` x ) ) ) i^i ( _V X. ( V ^m V ) ) ) ) | 
						
							| 21 |  | df-pj |  |-  proj = ( w e. _V |-> ( ( x e. ( LSubSp ` w ) |-> ( x ( proj1 ` w ) ( ( ocv ` w ) ` x ) ) ) i^i ( _V X. ( ( Base ` w ) ^m ( Base ` w ) ) ) ) ) | 
						
							| 22 | 2 | fvexi |  |-  L e. _V | 
						
							| 23 | 22 | inex1 |  |-  ( L i^i _V ) e. _V | 
						
							| 24 |  | ovex |  |-  ( V ^m V ) e. _V | 
						
							| 25 | 24 | inex2 |  |-  ( _V i^i ( V ^m V ) ) e. _V | 
						
							| 26 | 23 25 | xpex |  |-  ( ( L i^i _V ) X. ( _V i^i ( V ^m V ) ) ) e. _V | 
						
							| 27 |  | eqid |  |-  ( x e. L |-> ( x P ( ._|_ ` x ) ) ) = ( x e. L |-> ( x P ( ._|_ ` x ) ) ) | 
						
							| 28 |  | ovexd |  |-  ( x e. L -> ( x P ( ._|_ ` x ) ) e. _V ) | 
						
							| 29 | 27 28 | fmpti |  |-  ( x e. L |-> ( x P ( ._|_ ` x ) ) ) : L --> _V | 
						
							| 30 |  | fssxp |  |-  ( ( x e. L |-> ( x P ( ._|_ ` x ) ) ) : L --> _V -> ( x e. L |-> ( x P ( ._|_ ` x ) ) ) C_ ( L X. _V ) ) | 
						
							| 31 |  | ssrin |  |-  ( ( x e. L |-> ( x P ( ._|_ ` x ) ) ) C_ ( L X. _V ) -> ( ( x e. L |-> ( x P ( ._|_ ` x ) ) ) i^i ( _V X. ( V ^m V ) ) ) C_ ( ( L X. _V ) i^i ( _V X. ( V ^m V ) ) ) ) | 
						
							| 32 | 29 30 31 | mp2b |  |-  ( ( x e. L |-> ( x P ( ._|_ ` x ) ) ) i^i ( _V X. ( V ^m V ) ) ) C_ ( ( L X. _V ) i^i ( _V X. ( V ^m V ) ) ) | 
						
							| 33 |  | inxp |  |-  ( ( L X. _V ) i^i ( _V X. ( V ^m V ) ) ) = ( ( L i^i _V ) X. ( _V i^i ( V ^m V ) ) ) | 
						
							| 34 | 32 33 | sseqtri |  |-  ( ( x e. L |-> ( x P ( ._|_ ` x ) ) ) i^i ( _V X. ( V ^m V ) ) ) C_ ( ( L i^i _V ) X. ( _V i^i ( V ^m V ) ) ) | 
						
							| 35 | 26 34 | ssexi |  |-  ( ( x e. L |-> ( x P ( ._|_ ` x ) ) ) i^i ( _V X. ( V ^m V ) ) ) e. _V | 
						
							| 36 | 20 21 35 | fvmpt |  |-  ( W e. _V -> ( proj ` W ) = ( ( x e. L |-> ( x P ( ._|_ ` x ) ) ) i^i ( _V X. ( V ^m V ) ) ) ) | 
						
							| 37 |  | fvprc |  |-  ( -. W e. _V -> ( proj ` W ) = (/) ) | 
						
							| 38 |  | inss1 |  |-  ( ( x e. L |-> ( x P ( ._|_ ` x ) ) ) i^i ( _V X. ( V ^m V ) ) ) C_ ( x e. L |-> ( x P ( ._|_ ` x ) ) ) | 
						
							| 39 |  | fvprc |  |-  ( -. W e. _V -> ( LSubSp ` W ) = (/) ) | 
						
							| 40 | 2 39 | eqtrid |  |-  ( -. W e. _V -> L = (/) ) | 
						
							| 41 | 40 | mpteq1d |  |-  ( -. W e. _V -> ( x e. L |-> ( x P ( ._|_ ` x ) ) ) = ( x e. (/) |-> ( x P ( ._|_ ` x ) ) ) ) | 
						
							| 42 |  | mpt0 |  |-  ( x e. (/) |-> ( x P ( ._|_ ` x ) ) ) = (/) | 
						
							| 43 | 41 42 | eqtrdi |  |-  ( -. W e. _V -> ( x e. L |-> ( x P ( ._|_ ` x ) ) ) = (/) ) | 
						
							| 44 |  | sseq0 |  |-  ( ( ( ( x e. L |-> ( x P ( ._|_ ` x ) ) ) i^i ( _V X. ( V ^m V ) ) ) C_ ( x e. L |-> ( x P ( ._|_ ` x ) ) ) /\ ( x e. L |-> ( x P ( ._|_ ` x ) ) ) = (/) ) -> ( ( x e. L |-> ( x P ( ._|_ ` x ) ) ) i^i ( _V X. ( V ^m V ) ) ) = (/) ) | 
						
							| 45 | 38 43 44 | sylancr |  |-  ( -. W e. _V -> ( ( x e. L |-> ( x P ( ._|_ ` x ) ) ) i^i ( _V X. ( V ^m V ) ) ) = (/) ) | 
						
							| 46 | 37 45 | eqtr4d |  |-  ( -. W e. _V -> ( proj ` W ) = ( ( x e. L |-> ( x P ( ._|_ ` x ) ) ) i^i ( _V X. ( V ^m V ) ) ) ) | 
						
							| 47 | 36 46 | pm2.61i |  |-  ( proj ` W ) = ( ( x e. L |-> ( x P ( ._|_ ` x ) ) ) i^i ( _V X. ( V ^m V ) ) ) | 
						
							| 48 | 5 47 | eqtri |  |-  K = ( ( x e. L |-> ( x P ( ._|_ ` x ) ) ) i^i ( _V X. ( V ^m V ) ) ) |