Step |
Hyp |
Ref |
Expression |
0 |
|
cpj |
|- proj |
1 |
|
vh |
|- h |
2 |
|
cvv |
|- _V |
3 |
|
vx |
|- x |
4 |
|
clss |
|- LSubSp |
5 |
1
|
cv |
|- h |
6 |
5 4
|
cfv |
|- ( LSubSp ` h ) |
7 |
3
|
cv |
|- x |
8 |
|
cpj1 |
|- proj1 |
9 |
5 8
|
cfv |
|- ( proj1 ` h ) |
10 |
|
cocv |
|- ocv |
11 |
5 10
|
cfv |
|- ( ocv ` h ) |
12 |
7 11
|
cfv |
|- ( ( ocv ` h ) ` x ) |
13 |
7 12 9
|
co |
|- ( x ( proj1 ` h ) ( ( ocv ` h ) ` x ) ) |
14 |
3 6 13
|
cmpt |
|- ( x e. ( LSubSp ` h ) |-> ( x ( proj1 ` h ) ( ( ocv ` h ) ` x ) ) ) |
15 |
|
cbs |
|- Base |
16 |
5 15
|
cfv |
|- ( Base ` h ) |
17 |
|
cmap |
|- ^m |
18 |
16 16 17
|
co |
|- ( ( Base ` h ) ^m ( Base ` h ) ) |
19 |
2 18
|
cxp |
|- ( _V X. ( ( Base ` h ) ^m ( Base ` h ) ) ) |
20 |
14 19
|
cin |
|- ( ( x e. ( LSubSp ` h ) |-> ( x ( proj1 ` h ) ( ( ocv ` h ) ` x ) ) ) i^i ( _V X. ( ( Base ` h ) ^m ( Base ` h ) ) ) ) |
21 |
1 2 20
|
cmpt |
|- ( h e. _V |-> ( ( x e. ( LSubSp ` h ) |-> ( x ( proj1 ` h ) ( ( ocv ` h ) ` x ) ) ) i^i ( _V X. ( ( Base ` h ) ^m ( Base ` h ) ) ) ) ) |
22 |
0 21
|
wceq |
|- proj = ( h e. _V |-> ( ( x e. ( LSubSp ` h ) |-> ( x ( proj1 ` h ) ( ( ocv ` h ) ` x ) ) ) i^i ( _V X. ( ( Base ` h ) ^m ( Base ` h ) ) ) ) ) |