| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cpj |
|- proj |
| 1 |
|
vh |
|- h |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vx |
|- x |
| 4 |
|
clss |
|- LSubSp |
| 5 |
1
|
cv |
|- h |
| 6 |
5 4
|
cfv |
|- ( LSubSp ` h ) |
| 7 |
3
|
cv |
|- x |
| 8 |
|
cpj1 |
|- proj1 |
| 9 |
5 8
|
cfv |
|- ( proj1 ` h ) |
| 10 |
|
cocv |
|- ocv |
| 11 |
5 10
|
cfv |
|- ( ocv ` h ) |
| 12 |
7 11
|
cfv |
|- ( ( ocv ` h ) ` x ) |
| 13 |
7 12 9
|
co |
|- ( x ( proj1 ` h ) ( ( ocv ` h ) ` x ) ) |
| 14 |
3 6 13
|
cmpt |
|- ( x e. ( LSubSp ` h ) |-> ( x ( proj1 ` h ) ( ( ocv ` h ) ` x ) ) ) |
| 15 |
|
cbs |
|- Base |
| 16 |
5 15
|
cfv |
|- ( Base ` h ) |
| 17 |
|
cmap |
|- ^m |
| 18 |
16 16 17
|
co |
|- ( ( Base ` h ) ^m ( Base ` h ) ) |
| 19 |
2 18
|
cxp |
|- ( _V X. ( ( Base ` h ) ^m ( Base ` h ) ) ) |
| 20 |
14 19
|
cin |
|- ( ( x e. ( LSubSp ` h ) |-> ( x ( proj1 ` h ) ( ( ocv ` h ) ` x ) ) ) i^i ( _V X. ( ( Base ` h ) ^m ( Base ` h ) ) ) ) |
| 21 |
1 2 20
|
cmpt |
|- ( h e. _V |-> ( ( x e. ( LSubSp ` h ) |-> ( x ( proj1 ` h ) ( ( ocv ` h ) ` x ) ) ) i^i ( _V X. ( ( Base ` h ) ^m ( Base ` h ) ) ) ) ) |
| 22 |
0 21
|
wceq |
|- proj = ( h e. _V |-> ( ( x e. ( LSubSp ` h ) |-> ( x ( proj1 ` h ) ( ( ocv ` h ) ` x ) ) ) i^i ( _V X. ( ( Base ` h ) ^m ( Base ` h ) ) ) ) ) |