| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cpj |  |-  proj | 
						
							| 1 |  | vh |  |-  h | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vx |  |-  x | 
						
							| 4 |  | clss |  |-  LSubSp | 
						
							| 5 | 1 | cv |  |-  h | 
						
							| 6 | 5 4 | cfv |  |-  ( LSubSp ` h ) | 
						
							| 7 | 3 | cv |  |-  x | 
						
							| 8 |  | cpj1 |  |-  proj1 | 
						
							| 9 | 5 8 | cfv |  |-  ( proj1 ` h ) | 
						
							| 10 |  | cocv |  |-  ocv | 
						
							| 11 | 5 10 | cfv |  |-  ( ocv ` h ) | 
						
							| 12 | 7 11 | cfv |  |-  ( ( ocv ` h ) ` x ) | 
						
							| 13 | 7 12 9 | co |  |-  ( x ( proj1 ` h ) ( ( ocv ` h ) ` x ) ) | 
						
							| 14 | 3 6 13 | cmpt |  |-  ( x e. ( LSubSp ` h ) |-> ( x ( proj1 ` h ) ( ( ocv ` h ) ` x ) ) ) | 
						
							| 15 |  | cbs |  |-  Base | 
						
							| 16 | 5 15 | cfv |  |-  ( Base ` h ) | 
						
							| 17 |  | cmap |  |-  ^m | 
						
							| 18 | 16 16 17 | co |  |-  ( ( Base ` h ) ^m ( Base ` h ) ) | 
						
							| 19 | 2 18 | cxp |  |-  ( _V X. ( ( Base ` h ) ^m ( Base ` h ) ) ) | 
						
							| 20 | 14 19 | cin |  |-  ( ( x e. ( LSubSp ` h ) |-> ( x ( proj1 ` h ) ( ( ocv ` h ) ` x ) ) ) i^i ( _V X. ( ( Base ` h ) ^m ( Base ` h ) ) ) ) | 
						
							| 21 | 1 2 20 | cmpt |  |-  ( h e. _V |-> ( ( x e. ( LSubSp ` h ) |-> ( x ( proj1 ` h ) ( ( ocv ` h ) ` x ) ) ) i^i ( _V X. ( ( Base ` h ) ^m ( Base ` h ) ) ) ) ) | 
						
							| 22 | 0 21 | wceq |  |-  proj = ( h e. _V |-> ( ( x e. ( LSubSp ` h ) |-> ( x ( proj1 ` h ) ( ( ocv ` h ) ` x ) ) ) i^i ( _V X. ( ( Base ` h ) ^m ( Base ` h ) ) ) ) ) |