Metamath Proof Explorer


Definition df-hil

Description: Define class of all Hilbert spaces. Based on Proposition 4.5, p. 176, Gudrun Kalmbach, Quantum Measures and Spaces, Kluwer, Dordrecht, 1998. (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 16-Oct-2015)

Ref Expression
Assertion df-hil
|- Hil = { h e. PreHil | dom ( proj ` h ) = ( ClSubSp ` h ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 chil
 |-  Hil
1 vh
 |-  h
2 cphl
 |-  PreHil
3 cpj
 |-  proj
4 1 cv
 |-  h
5 4 3 cfv
 |-  ( proj ` h )
6 5 cdm
 |-  dom ( proj ` h )
7 ccss
 |-  ClSubSp
8 4 7 cfv
 |-  ( ClSubSp ` h )
9 6 8 wceq
 |-  dom ( proj ` h ) = ( ClSubSp ` h )
10 9 1 2 crab
 |-  { h e. PreHil | dom ( proj ` h ) = ( ClSubSp ` h ) }
11 0 10 wceq
 |-  Hil = { h e. PreHil | dom ( proj ` h ) = ( ClSubSp ` h ) }