| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cobs |
|- OBasis |
| 1 |
|
vh |
|- h |
| 2 |
|
cphl |
|- PreHil |
| 3 |
|
vb |
|- b |
| 4 |
|
cbs |
|- Base |
| 5 |
1
|
cv |
|- h |
| 6 |
5 4
|
cfv |
|- ( Base ` h ) |
| 7 |
6
|
cpw |
|- ~P ( Base ` h ) |
| 8 |
|
vx |
|- x |
| 9 |
3
|
cv |
|- b |
| 10 |
|
vy |
|- y |
| 11 |
8
|
cv |
|- x |
| 12 |
|
cip |
|- .i |
| 13 |
5 12
|
cfv |
|- ( .i ` h ) |
| 14 |
10
|
cv |
|- y |
| 15 |
11 14 13
|
co |
|- ( x ( .i ` h ) y ) |
| 16 |
11 14
|
wceq |
|- x = y |
| 17 |
|
cur |
|- 1r |
| 18 |
|
csca |
|- Scalar |
| 19 |
5 18
|
cfv |
|- ( Scalar ` h ) |
| 20 |
19 17
|
cfv |
|- ( 1r ` ( Scalar ` h ) ) |
| 21 |
|
c0g |
|- 0g |
| 22 |
19 21
|
cfv |
|- ( 0g ` ( Scalar ` h ) ) |
| 23 |
16 20 22
|
cif |
|- if ( x = y , ( 1r ` ( Scalar ` h ) ) , ( 0g ` ( Scalar ` h ) ) ) |
| 24 |
15 23
|
wceq |
|- ( x ( .i ` h ) y ) = if ( x = y , ( 1r ` ( Scalar ` h ) ) , ( 0g ` ( Scalar ` h ) ) ) |
| 25 |
24 10 9
|
wral |
|- A. y e. b ( x ( .i ` h ) y ) = if ( x = y , ( 1r ` ( Scalar ` h ) ) , ( 0g ` ( Scalar ` h ) ) ) |
| 26 |
25 8 9
|
wral |
|- A. x e. b A. y e. b ( x ( .i ` h ) y ) = if ( x = y , ( 1r ` ( Scalar ` h ) ) , ( 0g ` ( Scalar ` h ) ) ) |
| 27 |
|
cocv |
|- ocv |
| 28 |
5 27
|
cfv |
|- ( ocv ` h ) |
| 29 |
9 28
|
cfv |
|- ( ( ocv ` h ) ` b ) |
| 30 |
5 21
|
cfv |
|- ( 0g ` h ) |
| 31 |
30
|
csn |
|- { ( 0g ` h ) } |
| 32 |
29 31
|
wceq |
|- ( ( ocv ` h ) ` b ) = { ( 0g ` h ) } |
| 33 |
26 32
|
wa |
|- ( A. x e. b A. y e. b ( x ( .i ` h ) y ) = if ( x = y , ( 1r ` ( Scalar ` h ) ) , ( 0g ` ( Scalar ` h ) ) ) /\ ( ( ocv ` h ) ` b ) = { ( 0g ` h ) } ) |
| 34 |
33 3 7
|
crab |
|- { b e. ~P ( Base ` h ) | ( A. x e. b A. y e. b ( x ( .i ` h ) y ) = if ( x = y , ( 1r ` ( Scalar ` h ) ) , ( 0g ` ( Scalar ` h ) ) ) /\ ( ( ocv ` h ) ` b ) = { ( 0g ` h ) } ) } |
| 35 |
1 2 34
|
cmpt |
|- ( h e. PreHil |-> { b e. ~P ( Base ` h ) | ( A. x e. b A. y e. b ( x ( .i ` h ) y ) = if ( x = y , ( 1r ` ( Scalar ` h ) ) , ( 0g ` ( Scalar ` h ) ) ) /\ ( ( ocv ` h ) ` b ) = { ( 0g ` h ) } ) } ) |
| 36 |
0 35
|
wceq |
|- OBasis = ( h e. PreHil |-> { b e. ~P ( Base ` h ) | ( A. x e. b A. y e. b ( x ( .i ` h ) y ) = if ( x = y , ( 1r ` ( Scalar ` h ) ) , ( 0g ` ( Scalar ` h ) ) ) /\ ( ( ocv ` h ) ` b ) = { ( 0g ` h ) } ) } ) |