Metamath Proof Explorer


Definition df-obs

Description: Define the set of all orthonormal bases for a pre-Hilbert space. An orthonormal basis is a set of mutually orthogonal vectors with norm 1 and such that the linear span is dense in the whole space. (As this is an "algebraic" definition, before we have topology available, we express this denseness by saying that the double orthocomplement is the whole space, or equivalently, the single orthocomplement is trivial.) (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Assertion df-obs OBasis = ( ∈ PreHil ↦ { 𝑏 ∈ 𝒫 ( Base ‘ ) ∣ ( ∀ 𝑥𝑏𝑦𝑏 ( 𝑥 ( ·𝑖 ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ) ) , ( 0g ‘ ( Scalar ‘ ) ) ) ∧ ( ( ocv ‘ ) ‘ 𝑏 ) = { ( 0g ) } ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cobs OBasis
1 vh
2 cphl PreHil
3 vb 𝑏
4 cbs Base
5 1 cv
6 5 4 cfv ( Base ‘ )
7 6 cpw 𝒫 ( Base ‘ )
8 vx 𝑥
9 3 cv 𝑏
10 vy 𝑦
11 8 cv 𝑥
12 cip ·𝑖
13 5 12 cfv ( ·𝑖 )
14 10 cv 𝑦
15 11 14 13 co ( 𝑥 ( ·𝑖 ) 𝑦 )
16 11 14 wceq 𝑥 = 𝑦
17 cur 1r
18 csca Scalar
19 5 18 cfv ( Scalar ‘ )
20 19 17 cfv ( 1r ‘ ( Scalar ‘ ) )
21 c0g 0g
22 19 21 cfv ( 0g ‘ ( Scalar ‘ ) )
23 16 20 22 cif if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ) ) , ( 0g ‘ ( Scalar ‘ ) ) )
24 15 23 wceq ( 𝑥 ( ·𝑖 ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ) ) , ( 0g ‘ ( Scalar ‘ ) ) )
25 24 10 9 wral 𝑦𝑏 ( 𝑥 ( ·𝑖 ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ) ) , ( 0g ‘ ( Scalar ‘ ) ) )
26 25 8 9 wral 𝑥𝑏𝑦𝑏 ( 𝑥 ( ·𝑖 ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ) ) , ( 0g ‘ ( Scalar ‘ ) ) )
27 cocv ocv
28 5 27 cfv ( ocv ‘ )
29 9 28 cfv ( ( ocv ‘ ) ‘ 𝑏 )
30 5 21 cfv ( 0g )
31 30 csn { ( 0g ) }
32 29 31 wceq ( ( ocv ‘ ) ‘ 𝑏 ) = { ( 0g ) }
33 26 32 wa ( ∀ 𝑥𝑏𝑦𝑏 ( 𝑥 ( ·𝑖 ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ) ) , ( 0g ‘ ( Scalar ‘ ) ) ) ∧ ( ( ocv ‘ ) ‘ 𝑏 ) = { ( 0g ) } )
34 33 3 7 crab { 𝑏 ∈ 𝒫 ( Base ‘ ) ∣ ( ∀ 𝑥𝑏𝑦𝑏 ( 𝑥 ( ·𝑖 ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ) ) , ( 0g ‘ ( Scalar ‘ ) ) ) ∧ ( ( ocv ‘ ) ‘ 𝑏 ) = { ( 0g ) } ) }
35 1 2 34 cmpt ( ∈ PreHil ↦ { 𝑏 ∈ 𝒫 ( Base ‘ ) ∣ ( ∀ 𝑥𝑏𝑦𝑏 ( 𝑥 ( ·𝑖 ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ) ) , ( 0g ‘ ( Scalar ‘ ) ) ) ∧ ( ( ocv ‘ ) ‘ 𝑏 ) = { ( 0g ) } ) } )
36 0 35 wceq OBasis = ( ∈ PreHil ↦ { 𝑏 ∈ 𝒫 ( Base ‘ ) ∣ ( ∀ 𝑥𝑏𝑦𝑏 ( 𝑥 ( ·𝑖 ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ) ) , ( 0g ‘ ( Scalar ‘ ) ) ) ∧ ( ( ocv ‘ ) ‘ 𝑏 ) = { ( 0g ) } ) } )