Step |
Hyp |
Ref |
Expression |
0 |
|
cobs |
⊢ OBasis |
1 |
|
vh |
⊢ ℎ |
2 |
|
cphl |
⊢ PreHil |
3 |
|
vb |
⊢ 𝑏 |
4 |
|
cbs |
⊢ Base |
5 |
1
|
cv |
⊢ ℎ |
6 |
5 4
|
cfv |
⊢ ( Base ‘ ℎ ) |
7 |
6
|
cpw |
⊢ 𝒫 ( Base ‘ ℎ ) |
8 |
|
vx |
⊢ 𝑥 |
9 |
3
|
cv |
⊢ 𝑏 |
10 |
|
vy |
⊢ 𝑦 |
11 |
8
|
cv |
⊢ 𝑥 |
12 |
|
cip |
⊢ ·𝑖 |
13 |
5 12
|
cfv |
⊢ ( ·𝑖 ‘ ℎ ) |
14 |
10
|
cv |
⊢ 𝑦 |
15 |
11 14 13
|
co |
⊢ ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) |
16 |
11 14
|
wceq |
⊢ 𝑥 = 𝑦 |
17 |
|
cur |
⊢ 1r |
18 |
|
csca |
⊢ Scalar |
19 |
5 18
|
cfv |
⊢ ( Scalar ‘ ℎ ) |
20 |
19 17
|
cfv |
⊢ ( 1r ‘ ( Scalar ‘ ℎ ) ) |
21 |
|
c0g |
⊢ 0g |
22 |
19 21
|
cfv |
⊢ ( 0g ‘ ( Scalar ‘ ℎ ) ) |
23 |
16 20 22
|
cif |
⊢ if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ℎ ) ) , ( 0g ‘ ( Scalar ‘ ℎ ) ) ) |
24 |
15 23
|
wceq |
⊢ ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ℎ ) ) , ( 0g ‘ ( Scalar ‘ ℎ ) ) ) |
25 |
24 10 9
|
wral |
⊢ ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ℎ ) ) , ( 0g ‘ ( Scalar ‘ ℎ ) ) ) |
26 |
25 8 9
|
wral |
⊢ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ℎ ) ) , ( 0g ‘ ( Scalar ‘ ℎ ) ) ) |
27 |
|
cocv |
⊢ ocv |
28 |
5 27
|
cfv |
⊢ ( ocv ‘ ℎ ) |
29 |
9 28
|
cfv |
⊢ ( ( ocv ‘ ℎ ) ‘ 𝑏 ) |
30 |
5 21
|
cfv |
⊢ ( 0g ‘ ℎ ) |
31 |
30
|
csn |
⊢ { ( 0g ‘ ℎ ) } |
32 |
29 31
|
wceq |
⊢ ( ( ocv ‘ ℎ ) ‘ 𝑏 ) = { ( 0g ‘ ℎ ) } |
33 |
26 32
|
wa |
⊢ ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ℎ ) ) , ( 0g ‘ ( Scalar ‘ ℎ ) ) ) ∧ ( ( ocv ‘ ℎ ) ‘ 𝑏 ) = { ( 0g ‘ ℎ ) } ) |
34 |
33 3 7
|
crab |
⊢ { 𝑏 ∈ 𝒫 ( Base ‘ ℎ ) ∣ ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ℎ ) ) , ( 0g ‘ ( Scalar ‘ ℎ ) ) ) ∧ ( ( ocv ‘ ℎ ) ‘ 𝑏 ) = { ( 0g ‘ ℎ ) } ) } |
35 |
1 2 34
|
cmpt |
⊢ ( ℎ ∈ PreHil ↦ { 𝑏 ∈ 𝒫 ( Base ‘ ℎ ) ∣ ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ℎ ) ) , ( 0g ‘ ( Scalar ‘ ℎ ) ) ) ∧ ( ( ocv ‘ ℎ ) ‘ 𝑏 ) = { ( 0g ‘ ℎ ) } ) } ) |
36 |
0 35
|
wceq |
⊢ OBasis = ( ℎ ∈ PreHil ↦ { 𝑏 ∈ 𝒫 ( Base ‘ ℎ ) ∣ ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ℎ ) ) , ( 0g ‘ ( Scalar ‘ ℎ ) ) ) ∧ ( ( ocv ‘ ℎ ) ‘ 𝑏 ) = { ( 0g ‘ ℎ ) } ) } ) |