| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cobs |
⊢ OBasis |
| 1 |
|
vh |
⊢ ℎ |
| 2 |
|
cphl |
⊢ PreHil |
| 3 |
|
vb |
⊢ 𝑏 |
| 4 |
|
cbs |
⊢ Base |
| 5 |
1
|
cv |
⊢ ℎ |
| 6 |
5 4
|
cfv |
⊢ ( Base ‘ ℎ ) |
| 7 |
6
|
cpw |
⊢ 𝒫 ( Base ‘ ℎ ) |
| 8 |
|
vx |
⊢ 𝑥 |
| 9 |
3
|
cv |
⊢ 𝑏 |
| 10 |
|
vy |
⊢ 𝑦 |
| 11 |
8
|
cv |
⊢ 𝑥 |
| 12 |
|
cip |
⊢ ·𝑖 |
| 13 |
5 12
|
cfv |
⊢ ( ·𝑖 ‘ ℎ ) |
| 14 |
10
|
cv |
⊢ 𝑦 |
| 15 |
11 14 13
|
co |
⊢ ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) |
| 16 |
11 14
|
wceq |
⊢ 𝑥 = 𝑦 |
| 17 |
|
cur |
⊢ 1r |
| 18 |
|
csca |
⊢ Scalar |
| 19 |
5 18
|
cfv |
⊢ ( Scalar ‘ ℎ ) |
| 20 |
19 17
|
cfv |
⊢ ( 1r ‘ ( Scalar ‘ ℎ ) ) |
| 21 |
|
c0g |
⊢ 0g |
| 22 |
19 21
|
cfv |
⊢ ( 0g ‘ ( Scalar ‘ ℎ ) ) |
| 23 |
16 20 22
|
cif |
⊢ if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ℎ ) ) , ( 0g ‘ ( Scalar ‘ ℎ ) ) ) |
| 24 |
15 23
|
wceq |
⊢ ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ℎ ) ) , ( 0g ‘ ( Scalar ‘ ℎ ) ) ) |
| 25 |
24 10 9
|
wral |
⊢ ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ℎ ) ) , ( 0g ‘ ( Scalar ‘ ℎ ) ) ) |
| 26 |
25 8 9
|
wral |
⊢ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ℎ ) ) , ( 0g ‘ ( Scalar ‘ ℎ ) ) ) |
| 27 |
|
cocv |
⊢ ocv |
| 28 |
5 27
|
cfv |
⊢ ( ocv ‘ ℎ ) |
| 29 |
9 28
|
cfv |
⊢ ( ( ocv ‘ ℎ ) ‘ 𝑏 ) |
| 30 |
5 21
|
cfv |
⊢ ( 0g ‘ ℎ ) |
| 31 |
30
|
csn |
⊢ { ( 0g ‘ ℎ ) } |
| 32 |
29 31
|
wceq |
⊢ ( ( ocv ‘ ℎ ) ‘ 𝑏 ) = { ( 0g ‘ ℎ ) } |
| 33 |
26 32
|
wa |
⊢ ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ℎ ) ) , ( 0g ‘ ( Scalar ‘ ℎ ) ) ) ∧ ( ( ocv ‘ ℎ ) ‘ 𝑏 ) = { ( 0g ‘ ℎ ) } ) |
| 34 |
33 3 7
|
crab |
⊢ { 𝑏 ∈ 𝒫 ( Base ‘ ℎ ) ∣ ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ℎ ) ) , ( 0g ‘ ( Scalar ‘ ℎ ) ) ) ∧ ( ( ocv ‘ ℎ ) ‘ 𝑏 ) = { ( 0g ‘ ℎ ) } ) } |
| 35 |
1 2 34
|
cmpt |
⊢ ( ℎ ∈ PreHil ↦ { 𝑏 ∈ 𝒫 ( Base ‘ ℎ ) ∣ ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ℎ ) ) , ( 0g ‘ ( Scalar ‘ ℎ ) ) ) ∧ ( ( ocv ‘ ℎ ) ‘ 𝑏 ) = { ( 0g ‘ ℎ ) } ) } ) |
| 36 |
0 35
|
wceq |
⊢ OBasis = ( ℎ ∈ PreHil ↦ { 𝑏 ∈ 𝒫 ( Base ‘ ℎ ) ∣ ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ℎ ) ) , ( 0g ‘ ( Scalar ‘ ℎ ) ) ) ∧ ( ( ocv ‘ ℎ ) ‘ 𝑏 ) = { ( 0g ‘ ℎ ) } ) } ) |