Database BASIC ALGEBRAIC STRUCTURES Generalized pre-Hilbert and Hilbert spaces Orthogonal projection and orthonormal bases df-hil  
				
		 
		
			
		 
		Description:   Define class of all Hilbert spaces.  Based on Proposition 4.5, p. 176,
       Gudrun Kalmbach, Quantum Measures and Spaces, Kluwer, Dordrecht, 1998.
       (Contributed by NM , 7-Oct-2011)   (Revised by Mario Carneiro , 16-Oct-2015) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-hil   ⊢   Hil  =   h  ∈  PreHil  |    dom  ⁡   proj  ⁡  h     =   ClSubSp  ⁡  h            
				 
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							chil  class  Hil    
						
							1 
								
							 
							vh  setvar  h    
						
							2 
								
							 
							cphl  class  PreHil    
						
							3 
								
							 
							cpj  class  proj    
						
							4 
								1 
							 
							cv  setvar  h    
						
							5 
								4  3 
							 
							cfv  class   proj  ⁡  h     
						
							6 
								5 
							 
							cdm  class   dom  ⁡   proj  ⁡  h       
						
							7 
								
							 
							ccss  class  ClSubSp    
						
							8 
								4  7 
							 
							cfv  class   ClSubSp  ⁡  h     
						
							9 
								6  8 
							 
							wceq  wff    dom  ⁡   proj  ⁡  h     =   ClSubSp  ⁡  h       
						
							10 
								9  1  2 
							 
							crab  class   h  ∈  PreHil  |    dom  ⁡   proj  ⁡  h     =   ClSubSp  ⁡  h         
						
							11 
								0  10 
							 
							wceq  wff   Hil  =   h  ∈  PreHil  |    dom  ⁡   proj  ⁡  h     =   ClSubSp  ⁡  h