Metamath Proof Explorer


Theorem pjval

Description: Value of the projection map. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses pjfval2.o ˙ = ocv W
pjfval2.p P = proj 1 W
pjfval2.k K = proj W
Assertion pjval T dom K K T = T P ˙ T

Proof

Step Hyp Ref Expression
1 pjfval2.o ˙ = ocv W
2 pjfval2.p P = proj 1 W
3 pjfval2.k K = proj W
4 id x = T x = T
5 fveq2 x = T ˙ x = ˙ T
6 4 5 oveq12d x = T x P ˙ x = T P ˙ T
7 1 2 3 pjfval2 K = x dom K x P ˙ x
8 ovex T P ˙ T V
9 6 7 8 fvmpt T dom K K T = T P ˙ T