Metamath Proof Explorer


Theorem pjfval2

Description: Value of the projection map with implicit domain. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses pjfval2.o ˙ = ocv W
pjfval2.p P = proj 1 W
pjfval2.k K = proj W
Assertion pjfval2 K = x dom K x P ˙ x

Proof

Step Hyp Ref Expression
1 pjfval2.o ˙ = ocv W
2 pjfval2.p P = proj 1 W
3 pjfval2.k K = proj W
4 df-mpt x LSubSp W x P ˙ x = x y | x LSubSp W y = x P ˙ x
5 df-xp V × Base W Base W = x y | x V y Base W Base W
6 4 5 ineq12i x LSubSp W x P ˙ x V × Base W Base W = x y | x LSubSp W y = x P ˙ x x y | x V y Base W Base W
7 eqid Base W = Base W
8 eqid LSubSp W = LSubSp W
9 7 8 1 2 3 pjfval K = x LSubSp W x P ˙ x V × Base W Base W
10 7 8 1 2 3 pjdm x dom K x LSubSp W x P ˙ x : Base W Base W
11 eleq1 y = x P ˙ x y Base W Base W x P ˙ x Base W Base W
12 fvex Base W V
13 12 12 elmap x P ˙ x Base W Base W x P ˙ x : Base W Base W
14 11 13 bitr2di y = x P ˙ x x P ˙ x : Base W Base W y Base W Base W
15 14 anbi2d y = x P ˙ x x LSubSp W x P ˙ x : Base W Base W x LSubSp W y Base W Base W
16 10 15 syl5bb y = x P ˙ x x dom K x LSubSp W y Base W Base W
17 16 pm5.32ri x dom K y = x P ˙ x x LSubSp W y Base W Base W y = x P ˙ x
18 an32 x LSubSp W y Base W Base W y = x P ˙ x x LSubSp W y = x P ˙ x y Base W Base W
19 vex x V
20 19 biantrur y Base W Base W x V y Base W Base W
21 20 anbi2i x LSubSp W y = x P ˙ x y Base W Base W x LSubSp W y = x P ˙ x x V y Base W Base W
22 17 18 21 3bitri x dom K y = x P ˙ x x LSubSp W y = x P ˙ x x V y Base W Base W
23 22 opabbii x y | x dom K y = x P ˙ x = x y | x LSubSp W y = x P ˙ x x V y Base W Base W
24 df-mpt x dom K x P ˙ x = x y | x dom K y = x P ˙ x
25 inopab x y | x LSubSp W y = x P ˙ x x y | x V y Base W Base W = x y | x LSubSp W y = x P ˙ x x V y Base W Base W
26 23 24 25 3eqtr4i x dom K x P ˙ x = x y | x LSubSp W y = x P ˙ x x y | x V y Base W Base W
27 6 9 26 3eqtr4i K = x dom K x P ˙ x