Metamath Proof Explorer


Theorem pjval

Description: Value of the projection map. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses pjfval2.o = ( ocv ‘ 𝑊 )
pjfval2.p 𝑃 = ( proj1𝑊 )
pjfval2.k 𝐾 = ( proj ‘ 𝑊 )
Assertion pjval ( 𝑇 ∈ dom 𝐾 → ( 𝐾𝑇 ) = ( 𝑇 𝑃 ( 𝑇 ) ) )

Proof

Step Hyp Ref Expression
1 pjfval2.o = ( ocv ‘ 𝑊 )
2 pjfval2.p 𝑃 = ( proj1𝑊 )
3 pjfval2.k 𝐾 = ( proj ‘ 𝑊 )
4 id ( 𝑥 = 𝑇𝑥 = 𝑇 )
5 fveq2 ( 𝑥 = 𝑇 → ( 𝑥 ) = ( 𝑇 ) )
6 4 5 oveq12d ( 𝑥 = 𝑇 → ( 𝑥 𝑃 ( 𝑥 ) ) = ( 𝑇 𝑃 ( 𝑇 ) ) )
7 1 2 3 pjfval2 𝐾 = ( 𝑥 ∈ dom 𝐾 ↦ ( 𝑥 𝑃 ( 𝑥 ) ) )
8 ovex ( 𝑇 𝑃 ( 𝑇 ) ) ∈ V
9 6 7 8 fvmpt ( 𝑇 ∈ dom 𝐾 → ( 𝐾𝑇 ) = ( 𝑇 𝑃 ( 𝑇 ) ) )