Metamath Proof Explorer


Theorem pjval

Description: Value of the projection map. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses pjfval2.o
|- ._|_ = ( ocv ` W )
pjfval2.p
|- P = ( proj1 ` W )
pjfval2.k
|- K = ( proj ` W )
Assertion pjval
|- ( T e. dom K -> ( K ` T ) = ( T P ( ._|_ ` T ) ) )

Proof

Step Hyp Ref Expression
1 pjfval2.o
 |-  ._|_ = ( ocv ` W )
2 pjfval2.p
 |-  P = ( proj1 ` W )
3 pjfval2.k
 |-  K = ( proj ` W )
4 id
 |-  ( x = T -> x = T )
5 fveq2
 |-  ( x = T -> ( ._|_ ` x ) = ( ._|_ ` T ) )
6 4 5 oveq12d
 |-  ( x = T -> ( x P ( ._|_ ` x ) ) = ( T P ( ._|_ ` T ) ) )
7 1 2 3 pjfval2
 |-  K = ( x e. dom K |-> ( x P ( ._|_ ` x ) ) )
8 ovex
 |-  ( T P ( ._|_ ` T ) ) e. _V
9 6 7 8 fvmpt
 |-  ( T e. dom K -> ( K ` T ) = ( T P ( ._|_ ` T ) ) )