| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjf.k |
⊢ 𝐾 = ( proj ‘ 𝑊 ) |
| 2 |
|
pjf.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 3 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 4 |
|
eqid |
⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) |
| 5 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 6 |
|
eqid |
⊢ ( Cntz ‘ 𝑊 ) = ( Cntz ‘ 𝑊 ) |
| 7 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → 𝑊 ∈ LMod ) |
| 9 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 10 |
9
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → ( LSubSp ‘ 𝑊 ) ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 11 |
8 10
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( LSubSp ‘ 𝑊 ) ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 12 |
|
eqid |
⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) |
| 13 |
2 9 12 4 1
|
pjdm2 |
⊢ ( 𝑊 ∈ PreHil → ( 𝑇 ∈ dom 𝐾 ↔ ( 𝑇 ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) = 𝑉 ) ) ) |
| 14 |
13
|
simprbda |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → 𝑇 ∈ ( LSubSp ‘ 𝑊 ) ) |
| 15 |
11 14
|
sseldd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 16 |
2 9
|
lssss |
⊢ ( 𝑇 ∈ ( LSubSp ‘ 𝑊 ) → 𝑇 ⊆ 𝑉 ) |
| 17 |
14 16
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → 𝑇 ⊆ 𝑉 ) |
| 18 |
2 12 9
|
ocvlss |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ⊆ 𝑉 ) → ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 19 |
17 18
|
syldan |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 20 |
11 19
|
sseldd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 21 |
12 9 5
|
ocvin |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ ( LSubSp ‘ 𝑊 ) ) → ( 𝑇 ∩ ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) = { ( 0g ‘ 𝑊 ) } ) |
| 22 |
14 21
|
syldan |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( 𝑇 ∩ ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) = { ( 0g ‘ 𝑊 ) } ) |
| 23 |
|
lmodabl |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) |
| 24 |
8 23
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → 𝑊 ∈ Abel ) |
| 25 |
6 24 15 20
|
ablcntzd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → 𝑇 ⊆ ( ( Cntz ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) ) |
| 26 |
|
eqid |
⊢ ( proj1 ‘ 𝑊 ) = ( proj1 ‘ 𝑊 ) |
| 27 |
3 4 5 6 15 20 22 25 26
|
pj1f |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( 𝑇 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) : ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) ⟶ 𝑇 ) |
| 28 |
12 26 1
|
pjval |
⊢ ( 𝑇 ∈ dom 𝐾 → ( 𝐾 ‘ 𝑇 ) = ( 𝑇 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( 𝐾 ‘ 𝑇 ) = ( 𝑇 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) ) |
| 30 |
29
|
eqcomd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( 𝑇 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) = ( 𝐾 ‘ 𝑇 ) ) |
| 31 |
13
|
simplbda |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) = 𝑉 ) |
| 32 |
30 31
|
feq12d |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( ( 𝑇 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) : ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) ⟶ 𝑇 ↔ ( 𝐾 ‘ 𝑇 ) : 𝑉 ⟶ 𝑇 ) ) |
| 33 |
27 32
|
mpbid |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( 𝐾 ‘ 𝑇 ) : 𝑉 ⟶ 𝑇 ) |