| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjf.k | ⊢ 𝐾  =  ( proj ‘ 𝑊 ) | 
						
							| 2 |  | pjf.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 3 |  | eqid | ⊢ ( +g ‘ 𝑊 )  =  ( +g ‘ 𝑊 ) | 
						
							| 4 |  | eqid | ⊢ ( LSSum ‘ 𝑊 )  =  ( LSSum ‘ 𝑊 ) | 
						
							| 5 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 6 |  | eqid | ⊢ ( Cntz ‘ 𝑊 )  =  ( Cntz ‘ 𝑊 ) | 
						
							| 7 |  | phllmod | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LMod ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  𝑊  ∈  LMod ) | 
						
							| 9 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 10 | 9 | lsssssubg | ⊢ ( 𝑊  ∈  LMod  →  ( LSubSp ‘ 𝑊 )  ⊆  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 11 | 8 10 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  ( LSubSp ‘ 𝑊 )  ⊆  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 12 |  | eqid | ⊢ ( ocv ‘ 𝑊 )  =  ( ocv ‘ 𝑊 ) | 
						
							| 13 | 2 9 12 4 1 | pjdm2 | ⊢ ( 𝑊  ∈  PreHil  →  ( 𝑇  ∈  dom  𝐾  ↔  ( 𝑇  ∈  ( LSubSp ‘ 𝑊 )  ∧  ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) )  =  𝑉 ) ) ) | 
						
							| 14 | 13 | simprbda | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  𝑇  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 15 | 11 14 | sseldd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  𝑇  ∈  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 16 | 2 9 | lssss | ⊢ ( 𝑇  ∈  ( LSubSp ‘ 𝑊 )  →  𝑇  ⊆  𝑉 ) | 
						
							| 17 | 14 16 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  𝑇  ⊆  𝑉 ) | 
						
							| 18 | 2 12 9 | ocvlss | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ⊆  𝑉 )  →  ( ( ocv ‘ 𝑊 ) ‘ 𝑇 )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 19 | 17 18 | syldan | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  ( ( ocv ‘ 𝑊 ) ‘ 𝑇 )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 20 | 11 19 | sseldd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  ( ( ocv ‘ 𝑊 ) ‘ 𝑇 )  ∈  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 21 | 12 9 5 | ocvin | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  ( LSubSp ‘ 𝑊 ) )  →  ( 𝑇  ∩  ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) )  =  { ( 0g ‘ 𝑊 ) } ) | 
						
							| 22 | 14 21 | syldan | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  ( 𝑇  ∩  ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) )  =  { ( 0g ‘ 𝑊 ) } ) | 
						
							| 23 |  | lmodabl | ⊢ ( 𝑊  ∈  LMod  →  𝑊  ∈  Abel ) | 
						
							| 24 | 8 23 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  𝑊  ∈  Abel ) | 
						
							| 25 | 6 24 15 20 | ablcntzd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  𝑇  ⊆  ( ( Cntz ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) ) | 
						
							| 26 |  | eqid | ⊢ ( proj1 ‘ 𝑊 )  =  ( proj1 ‘ 𝑊 ) | 
						
							| 27 | 3 4 5 6 15 20 22 25 26 | pj1f | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  ( 𝑇 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) : ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) ⟶ 𝑇 ) | 
						
							| 28 | 12 26 1 | pjval | ⊢ ( 𝑇  ∈  dom  𝐾  →  ( 𝐾 ‘ 𝑇 )  =  ( 𝑇 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  ( 𝐾 ‘ 𝑇 )  =  ( 𝑇 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) ) | 
						
							| 30 | 29 | eqcomd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  ( 𝑇 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) )  =  ( 𝐾 ‘ 𝑇 ) ) | 
						
							| 31 | 13 | simplbda | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) )  =  𝑉 ) | 
						
							| 32 | 30 31 | feq12d | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  ( ( 𝑇 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) : ( 𝑇 ( LSSum ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) ⟶ 𝑇  ↔  ( 𝐾 ‘ 𝑇 ) : 𝑉 ⟶ 𝑇 ) ) | 
						
							| 33 | 27 32 | mpbid | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  ( 𝐾 ‘ 𝑇 ) : 𝑉 ⟶ 𝑇 ) |