| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjf.k | ⊢ 𝐾  =  ( proj ‘ 𝑊 ) | 
						
							| 2 |  | pjf.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 3 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 4 |  | eqid | ⊢ ( ocv ‘ 𝑊 )  =  ( ocv ‘ 𝑊 ) | 
						
							| 5 |  | eqid | ⊢ ( proj1 ‘ 𝑊 )  =  ( proj1 ‘ 𝑊 ) | 
						
							| 6 | 2 3 4 5 1 | pjdm | ⊢ ( 𝑇  ∈  dom  𝐾  ↔  ( 𝑇  ∈  ( LSubSp ‘ 𝑊 )  ∧  ( 𝑇 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) : 𝑉 ⟶ 𝑉 ) ) | 
						
							| 7 | 6 | simprbi | ⊢ ( 𝑇  ∈  dom  𝐾  →  ( 𝑇 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) : 𝑉 ⟶ 𝑉 ) | 
						
							| 8 | 4 5 1 | pjval | ⊢ ( 𝑇  ∈  dom  𝐾  →  ( 𝐾 ‘ 𝑇 )  =  ( 𝑇 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) ) | 
						
							| 9 | 8 | feq1d | ⊢ ( 𝑇  ∈  dom  𝐾  →  ( ( 𝐾 ‘ 𝑇 ) : 𝑉 ⟶ 𝑉  ↔  ( 𝑇 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) : 𝑉 ⟶ 𝑉 ) ) | 
						
							| 10 | 7 9 | mpbird | ⊢ ( 𝑇  ∈  dom  𝐾  →  ( 𝐾 ‘ 𝑇 ) : 𝑉 ⟶ 𝑉 ) |