Metamath Proof Explorer


Theorem pjf

Description: A projection is a function on the base set. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses pjf.k 𝐾 = ( proj ‘ 𝑊 )
pjf.v 𝑉 = ( Base ‘ 𝑊 )
Assertion pjf ( 𝑇 ∈ dom 𝐾 → ( 𝐾𝑇 ) : 𝑉𝑉 )

Proof

Step Hyp Ref Expression
1 pjf.k 𝐾 = ( proj ‘ 𝑊 )
2 pjf.v 𝑉 = ( Base ‘ 𝑊 )
3 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
4 eqid ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 )
5 eqid ( proj1𝑊 ) = ( proj1𝑊 )
6 2 3 4 5 1 pjdm ( 𝑇 ∈ dom 𝐾 ↔ ( 𝑇 ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑇 ( proj1𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) : 𝑉𝑉 ) )
7 6 simprbi ( 𝑇 ∈ dom 𝐾 → ( 𝑇 ( proj1𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) : 𝑉𝑉 )
8 4 5 1 pjval ( 𝑇 ∈ dom 𝐾 → ( 𝐾𝑇 ) = ( 𝑇 ( proj1𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) )
9 8 feq1d ( 𝑇 ∈ dom 𝐾 → ( ( 𝐾𝑇 ) : 𝑉𝑉 ↔ ( 𝑇 ( proj1𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) : 𝑉𝑉 ) )
10 7 9 mpbird ( 𝑇 ∈ dom 𝐾 → ( 𝐾𝑇 ) : 𝑉𝑉 )