| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjf.k |
⊢ 𝐾 = ( proj ‘ 𝑊 ) |
| 2 |
|
pjf.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 3 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 4 |
|
eqid |
⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) |
| 5 |
|
eqid |
⊢ ( proj1 ‘ 𝑊 ) = ( proj1 ‘ 𝑊 ) |
| 6 |
2 3 4 5 1
|
pjdm |
⊢ ( 𝑇 ∈ dom 𝐾 ↔ ( 𝑇 ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑇 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) : 𝑉 ⟶ 𝑉 ) ) |
| 7 |
6
|
simprbi |
⊢ ( 𝑇 ∈ dom 𝐾 → ( 𝑇 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) : 𝑉 ⟶ 𝑉 ) |
| 8 |
4 5 1
|
pjval |
⊢ ( 𝑇 ∈ dom 𝐾 → ( 𝐾 ‘ 𝑇 ) = ( 𝑇 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) ) |
| 9 |
8
|
feq1d |
⊢ ( 𝑇 ∈ dom 𝐾 → ( ( 𝐾 ‘ 𝑇 ) : 𝑉 ⟶ 𝑉 ↔ ( 𝑇 ( proj1 ‘ 𝑊 ) ( ( ocv ‘ 𝑊 ) ‘ 𝑇 ) ) : 𝑉 ⟶ 𝑉 ) ) |
| 10 |
7 9
|
mpbird |
⊢ ( 𝑇 ∈ dom 𝐾 → ( 𝐾 ‘ 𝑇 ) : 𝑉 ⟶ 𝑉 ) |